Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.08127
Cited By
Learning curves of generic features maps for realistic datasets with a teacher-student model
16 February 2021
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning curves of generic features maps for realistic datasets with a teacher-student model"
30 / 30 papers shown
Title
Neural Learning Rules from Associative Networks Theory
Daniele Lotito
41
0
0
11 Mar 2025
The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model
Kaito Takanami
Takashi Takahashi
Ayaka Sakata
35
0
0
27 Jan 2025
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
C. Pehlevan
23
10
0
20 May 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
72
2
0
29 Apr 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
32
7
0
02 Feb 2024
Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption
Vasilii Feofanov
Malik Tiomoko
Aladin Virmaux
31
5
0
20 Oct 2023
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Edgar Dobriban
MLT
32
19
0
11 Oct 2023
Exact threshold for approximate ellipsoid fitting of random points
Antoine Maillard
Afonso S. Bandeira
27
1
0
09 Oct 2023
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
19
0
0
25 Jul 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
19
4
0
20 May 2023
Phase transitions in the mini-batch size for sparse and dense two-layer neural networks
Raffaele Marino
F. Ricci-Tersenghi
27
14
0
10 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
32
29
0
27 Mar 2023
Neural-prior stochastic block model
O. Duranthon
L. Zdeborová
30
3
0
17 Mar 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
30
19
0
13 Feb 2023
From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
Luca Arnaboldi
Ludovic Stephan
Florent Krzakala
Bruno Loureiro
MLT
30
31
0
12 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Edgar Dobriban
Hamed Hassani
19
8
0
31 Jan 2023
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
Monotonic Risk Relationships under Distribution Shifts for Regularized Risk Minimization
Daniel LeJeune
Jiayu Liu
Reinhard Heckel
18
0
0
20 Oct 2022
Penalization-induced shrinking without rotation in high dimensional GLM regression: a cavity analysis
Emanuele Massa
Marianne A Jonker
Anthony C. C. Coolen
20
1
0
09 Sep 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel Matrices with Polynomial Scalings
Yue M. Lu
H. Yau
19
24
0
12 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
29
121
0
03 May 2022
Learning curves for the multi-class teacher-student perceptron
Elisabetta Cornacchia
Francesca Mignacco
R. Veiga
Cédric Gerbelot
Bruno Loureiro
Lenka Zdeborová
12
21
0
22 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
133
200
0
07 Feb 2020
De-biasing convex regularized estimators and interval estimation in linear models
Pierre C. Bellec
Cun-Hui Zhang
21
20
0
26 Dec 2019
1