ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.12108
  4. Cited By
The Promises and Pitfalls of Deep Kernel Learning

The Promises and Pitfalls of Deep Kernel Learning

24 February 2021
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
    UQCV
    BDL
ArXivPDFHTML

Papers citing "The Promises and Pitfalls of Deep Kernel Learning"

17 / 17 papers shown
Title
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
128
0
0
08 Apr 2025
Image Classification with Deep Reinforcement Active Learning
Image Classification with Deep Reinforcement Active Learning
Mingyuan Jiu
Xuguang Song
H. Sahbi
Shupan Li
Yan Chen
Wei Guo
Lihua Guo
Mingliang Xu
VLM
24
0
0
31 Dec 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
Multiple output samples per input in a single-output Gaussian process
Multiple output samples per input in a single-output Gaussian process
J. H. M. Wong
Huayun Zhang
Nancy F. Chen
GP
11
2
0
05 Jun 2023
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
15
1
0
20 Nov 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
50
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
24
44
0
22 Feb 2022
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
9
0
08 Nov 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
22
1
0
05 Jul 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
No Free Lunch for Approximate MCMC
No Free Lunch for Approximate MCMC
J. Johndrow
Natesh S. Pillai
Aaron Smith
64
18
0
23 Oct 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
13
60
0
17 May 2020
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
60
171
0
08 Jul 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,134
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
84
271
0
24 Feb 2014
1