Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.01946
Cited By
Fixing Data Augmentation to Improve Adversarial Robustness
2 March 2021
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fixing Data Augmentation to Improve Adversarial Robustness"
50 / 174 papers shown
Title
Towards Deep Learning Models Resistant to Transfer-based Adversarial Attacks via Data-centric Robust Learning
Yulong Yang
Chenhao Lin
Xiang Ji
Qiwei Tian
Qian Li
Hongshan Yang
Zhibo Wang
Chao Shen
11
7
0
15 Oct 2023
Is Certifying
ℓ
p
\ell_p
ℓ
p
Robustness Still Worthwhile?
Ravi Mangal
Klas Leino
Zifan Wang
Kai Hu
Weicheng Yu
Corina S. Pasareanu
Anupam Datta
Matt Fredrikson
AAML
OOD
20
1
0
13 Oct 2023
Visual Data-Type Understanding does not emerge from Scaling Vision-Language Models
Vishaal Udandarao
Max F. Burg
Samuel Albanie
Matthias Bethge
VLM
24
8
0
12 Oct 2023
Improving Fast Minimum-Norm Attacks with Hyperparameter Optimization
Giuseppe Floris
Raffaele Mura
Luca Scionis
Giorgio Piras
Maura Pintor
Ambra Demontis
Battista Biggio
AAML
19
4
0
12 Oct 2023
PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust Generalization
Jiancong Xiao
Ruoyu Sun
Zhimin Luo
AAML
23
6
0
09 Oct 2023
Generating Less Certain Adversarial Examples Improves Robust Generalization
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
30
1
0
06 Oct 2023
Splitting the Difference on Adversarial Training
Matan Levi
A. Kontorovich
21
4
0
03 Oct 2023
Parameter-Saving Adversarial Training: Reinforcing Multi-Perturbation Robustness via Hypernetworks
Huihui Gong
Minjing Dong
Siqi Ma
S. Çamtepe
Surya Nepal
Chang Xu
AAML
OOD
13
1
0
28 Sep 2023
Improving Robustness of Deep Convolutional Neural Networks via Multiresolution Learning
Hongyan Zhou
Yao Liang
OOD
10
0
0
24 Sep 2023
Hazards in Deep Learning Testing: Prevalence, Impact and Recommendations
Salah Ghamizi
Maxime Cordy
Yuejun Guo
Mike Papadakis
And Yves Le Traon
8
1
0
11 Sep 2023
DiffDefense: Defending against Adversarial Attacks via Diffusion Models
Hondamunige Prasanna Silva
Lorenzo Seidenari
A. Bimbo
DiffM
33
6
0
07 Sep 2023
DiffSmooth: Certifiably Robust Learning via Diffusion Models and Local Smoothing
Jiawei Zhang
Zhongzhu Chen
Huan Zhang
Chaowei Xiao
Bo-wen Li
DiffM
31
20
0
28 Aug 2023
Revisiting and Exploring Efficient Fast Adversarial Training via LAW: Lipschitz Regularization and Auto Weight Averaging
Xiaojun Jia
YueFeng Chen
Xiaofeng Mao
Ranjie Duan
Jindong Gu
Rong Zhang
H. Xue
Xiaochun Cao
AAML
9
9
0
22 Aug 2023
Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning
Kaijie Zhu
Jindong Wang
Xixu Hu
Xingxu Xie
G. Yang
AAML
12
23
0
01 Aug 2023
NSA: Naturalistic Support Artifact to Boost Network Confidence
Abhijith Sharma
Phil Munz
Apurva Narayan
AAML
13
1
0
27 Jul 2023
Fix your downsampling ASAP! Be natively more robust via Aliasing and Spectral Artifact free Pooling
Julia Grabinski
J. Keuper
M. Keuper
AAML
14
7
0
19 Jul 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
19
11
0
10 Jul 2023
Enhancing Adversarial Training via Reweighting Optimization Trajectory
Tianjin Huang
Shiwei Liu
Tianlong Chen
Meng Fang
Lijuan Shen
Vlaod Menkovski
Lu Yin
Yulong Pei
Mykola Pechenizkiy
AAML
12
4
0
25 Jun 2023
Adversarial Training Should Be Cast as a Non-Zero-Sum Game
Alexander Robey
Fabian Latorre
George J. Pappas
Hamed Hassani
V. Cevher
AAML
66
12
0
19 Jun 2023
Revisiting and Advancing Adversarial Training Through A Simple Baseline
Hong Liu
AAML
16
0
0
13 Jun 2023
Toward Understanding Generative Data Augmentation
Chenyu Zheng
Guoqiang Wu
Chongxuan Li
13
24
0
27 May 2023
Robust Classification via a Single Diffusion Model
Huanran Chen
Yinpeng Dong
Zhengyi Wang
X. Yang
Chen-Dong Duan
Hang Su
Jun Zhu
69
56
0
24 May 2023
Decoupled Kullback-Leibler Divergence Loss
Jiequan Cui
Zhuotao Tian
Zhisheng Zhong
Xiaojuan Qi
Bei Yu
Hanwang Zhang
18
38
0
23 May 2023
DiffProtect: Generate Adversarial Examples with Diffusion Models for Facial Privacy Protection
Jiang-Long Liu
Chun Pong Lau
Ramalingam Chellappa
DiffM
21
28
0
23 May 2023
Annealing Self-Distillation Rectification Improves Adversarial Training
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
16
3
0
20 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
30
47
0
18 May 2023
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models
Zaitang Li
Pin-Yu Chen
Tsung-Yi Ho
AAML
DiffM
17
4
0
19 Apr 2023
Cross-Entropy Loss Functions: Theoretical Analysis and Applications
Anqi Mao
M. Mohri
Yutao Zhong
AAML
8
265
0
14 Apr 2023
Improving Fast Adversarial Training with Prior-Guided Knowledge
Xiaojun Jia
Yong Zhang
Xingxing Wei
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
14
26
0
01 Apr 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
20
14
0
24 Mar 2023
Revisiting DeepFool: generalization and improvement
Alireza Abdollahpourrostam
Mahed Abroshan
Seyed-Mohsen Moosavi-Dezfooli
AAML
11
2
0
22 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
20
34
0
19 Mar 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
M. Lee
Dongwoo Kim
34
52
0
16 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
14
7
0
21 Feb 2023
Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels
Zebin You
Yong Zhong
Fan Bao
Jiacheng Sun
Chongxuan Li
Jun Zhu
DiffM
VLM
198
35
0
21 Feb 2023
X-Adv: Physical Adversarial Object Attacks against X-ray Prohibited Item Detection
Aishan Liu
Jun Guo
Jiakai Wang
Siyuan Liang
Renshuai Tao
Wenbo Zhou
Cong Liu
Xianglong Liu
Dacheng Tao
AAML
26
60
0
19 Feb 2023
HateProof: Are Hateful Meme Detection Systems really Robust?
Piush Aggarwal
Pranit Chawla
Mithun Das
Punyajoy Saha
Binny Mathew
Torsten Zesch
Animesh Mukherjee
AAML
11
8
0
11 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
14
206
0
09 Feb 2023
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
Yuancheng Xu
Yanchao Sun
Micah Goldblum
Tom Goldstein
Furong Huang
AAML
10
35
0
06 Feb 2023
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection
Federica Granese
Marco Romanelli
S. Garg
Pablo Piantanida
AAML
17
0
0
04 Feb 2023
Uncovering Adversarial Risks of Test-Time Adaptation
Tong Wu
Feiran Jia
Xiangyu Qi
Jiachen T. Wang
Vikash Sehwag
Saeed Mahloujifar
Prateek Mittal
AAML
TTA
11
9
0
29 Jan 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
19
18
0
29 Jan 2023
Provable Unrestricted Adversarial Training without Compromise with Generalizability
Lili Zhang
Ning Yang
Yanchao Sun
Philip S. Yu
AAML
11
2
0
22 Jan 2023
Phase-shifted Adversarial Training
Yeachan Kim
Seongyeon Kim
Ihyeok Seo
Bonggun Shin
AAML
OOD
19
0
0
12 Jan 2023
Beckman Defense
A. V. Subramanyam
OOD
AAML
14
0
0
04 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
22
5
0
15 Dec 2022
Generative Robust Classification
Xuwang Yin
TPM
17
0
0
14 Dec 2022
DISCO: Adversarial Defense with Local Implicit Functions
Chih-Hui Ho
Nuno Vasconcelos
AAML
21
38
0
11 Dec 2022
Multiple Perturbation Attack: Attack Pixelwise Under Different
ℓ
p
\ell_p
ℓ
p
-norms For Better Adversarial Performance
Ngoc N. Tran
Anh Tuan Bui
Dinh Q. Phung
Trung Le
AAML
10
1
0
05 Dec 2022
Adversarial Rademacher Complexity of Deep Neural Networks
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Zhimin Luo
AAML
15
22
0
27 Nov 2022
Previous
1
2
3
4
Next