Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2103.01946
Cited By
v1
v2 (latest)
Fixing Data Augmentation to Improve Adversarial Robustness
2 March 2021
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fixing Data Augmentation to Improve Adversarial Robustness"
50 / 185 papers shown
Title
Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning
Pascal Zimmer
Ghassan O. Karame
AAML
227
0
0
17 Nov 2025
Generalist++: A Meta-learning Framework for Mitigating Trade-off in Adversarial Training
Yisen Wang
Yichuan Mo
Hongjun Wang
Junyi Li
Zhouchen Lin
AAML
112
1
0
15 Oct 2025
Joint Discriminative-Generative Modeling via Dual Adversarial Training
Xuwang Yin
Claire Zhang
Julie Steele
Nir Shavit
T. T. Wang
GAN
384
0
0
13 Oct 2025
The Impact of Scaling Training Data on Adversarial Robustness
Marco Zimmerli
Andreas Plesner
Till Aczél
Roger Wattenhofer
152
0
0
30 Sep 2025
InfiAgent: Self-Evolving Pyramid Agent Framework for Infinite Scenarios
Chenglin Yu
Yang Yu
Songmiao Wang
Y. Wang
Y. Yang
Jinjia Li
Ming Li
Hongxia Yang
LLMAG
189
0
0
26 Sep 2025
RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
Yunrui Yu
Kafeng Wang
Hang Su
Jun-Jie Zhu
AAML
131
0
0
30 Jul 2025
Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Peiran Sun
AAML
246
0
0
25 May 2025
Adversarial Robustness for Unified Multi-Modal Encoders via Efficient Calibration
Chih-Ting Liao
Bin Ren
Guofeng Mei
Tzu-Yu Huang
Xin Cao
Xu Zheng
AAML
224
3
0
17 May 2025
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Gaozheng Pei
Ke Ma
Yingfei Sun
Qianqian Xu
Qingming Huang
DiffM
446
4
0
02 May 2025
Stop Walking in Circles! Bailing Out Early in Projected Gradient Descent
Computer Vision and Pattern Recognition (CVPR), 2025
Philip Doldo
Derek Everett
Amol Khanna
A. Nguyen
Edward Raff
AAML
255
1
0
25 Mar 2025
LipShiFT: A Certifiably Robust Shift-based Vision Transformer
Rohan Menon
Nicola Franco
Stephan Günnemann
253
1
0
18 Mar 2025
Robust Dataset Distillation by Matching Adversarial Trajectories
Wei Lai
Tianyu Ding
ren dongdong
Lei Wang
Jing Huo
Yang Gao
Wenbin Li
AAML
DD
274
1
0
15 Mar 2025
One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy
Jiacheng Zhang
Benjamin I. P. Rubinstein
Jing Zhang
Yifan Zhang
355
0
0
04 Mar 2025
Fast Adversarial Training against Sparse Attacks Requires Loss Smoothing
Xuyang Zhong
Yixiao Huang
Chen Liu
AAML
332
0
0
28 Feb 2025
CLIPure: Purification in Latent Space via CLIP for Adversarially Robust Zero-Shot Classification
International Conference on Learning Representations (ICLR), 2025
Mingkun Zhang
Keping Bi
Wei Chen
Jiafeng Guo
Xueqi Cheng
BDL
VLM
445
8
0
25 Feb 2025
Model-Free Adversarial Purification via Coarse-To-Fine Tensor Network Representation
Guang Lin
D. Nguyen
Zerui Tao
Konstantinos Slavakis
Toshihisa Tanaka
Qibin Zhao
AAML
263
1
0
25 Feb 2025
Improved Diffusion-based Generative Model with Better Adversarial Robustness
International Conference on Learning Representations (ICLR), 2025
Zekun Wang
Mingyang Yi
Shuchen Xue
Zhiyu Li
Ming Liu
Bing Qin
Zhi-Ming Ma
DiffM
321
0
0
24 Feb 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Computer Vision and Pattern Recognition (CVPR), 2025
Ping Guo
Cheng Gong
Xi Lin
Fei Liu
Zhichao Lu
Gang Qu
Zhenkun Wang
AAML
282
0
0
13 Jan 2025
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Computer Vision and Pattern Recognition (CVPR), 2024
Yong Xie
Weijie Zheng
Hanxun Huang
Guangnan Ye
Jiabo He
AAML
597
1
0
20 Nov 2024
Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training
Junhao Dong
Xinghua Qu
Zhiyuan Wang
Yew-Soon Ong
AAML
258
3
0
05 Nov 2024
On the Robustness of Adversarial Training Against Uncertainty Attacks
Pattern Recognition (Pattern Recogn.), 2024
Emanuele Ledda
Giovanni Scodeller
Daniele Angioni
Giorgio Piras
Antonio Emanuele Cinà
Giorgio Fumera
Battista Biggio
Fabio Roli
AAML
344
1
0
29 Oct 2024
Low-Rank Adversarial PGD Attack
Dayana Savostianova
Emanuele Zangrando
Francesco Tudisco
AAML
238
3
0
16 Oct 2024
DAT: Improving Adversarial Robustness via Generative Amplitude Mix-up in Frequency Domain
Neural Information Processing Systems (NeurIPS), 2024
Fengpeng Li
Kemou Li
Haiwei Wu
Jinyu Tian
Jiantao Zhou
AAML
267
4
0
16 Oct 2024
Robustness Reprogramming for Representation Learning
International Conference on Learning Representations (ICLR), 2024
Zhichao Hou
MohamadAli Torkamani
Hamid Krim
Xiaorui Liu
AAML
OOD
359
1
0
06 Oct 2024
Test-Time Augmentation Meets Variational Bayes
Masanari Kimura
Howard Bondell
OOD
BDL
TDI
259
2
0
19 Sep 2024
LoRID: Low-Rank Iterative Diffusion for Adversarial Purification
AAAI Conference on Artificial Intelligence (AAAI), 2024
Geigh Zollicoffer
Minh Vu
Ben Nebgen
Juan Castorena
Boian S. Alexandrov
Manish Bhattarai
209
7
0
12 Sep 2024
Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information
European Conference on Artificial Intelligence (ECAI), 2024
Mingkun Zhang
Jianing Li
Wei Chen
Jiafeng Guo
Xueqi Cheng
249
9
0
12 Aug 2024
HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
Raffaele Mura
Giuseppe Floris
Luca Scionis
Giorgio Piras
Maura Pintor
Ambra Demontis
Giorgio Giacinto
Battista Biggio
Fabio Roli
AAML
229
0
0
11 Jul 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
313
3
0
26 Jun 2024
Large-Scale Dataset Pruning in Adversarial Training through Data Importance Extrapolation
Bjorn Nieth
Thomas Altstidl
Leo Schwinn
Björn Eskofier
AAML
328
3
0
19 Jun 2024
ZeroPur: Succinct Training-Free Adversarial Purification
Xiuli Bi
Zonglin Yang
Bo Liu
Xiaodong Cun
Chi-Man Pun
474
1
0
05 Jun 2024
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior
Shuyu Cheng
Yibo Miao
Yinpeng Dong
Xiao Yang
Xiao-Shan Gao
Jun Zhu
AAML
195
6
0
29 May 2024
PUMA: margin-based data pruning
Javier Maroto
Pascal Frossard
AAML
194
1
0
10 May 2024
Sparse-PGD: A Unified Framework for Sparse Adversarial Perturbations Generation
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024
Xuyang Zhong
Yixiao Huang
AAML
358
0
0
08 May 2024
You Only Need Half: Boosting Data Augmentation by Using Partial Content
Juntao Hu
Yuan Wu
143
1
0
05 May 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
International Conference on Machine Learning (ICML), 2024
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
187
2
0
03 May 2024
Brain-Inspired Continual Learning-Robust Feature Distillation and Re-Consolidation for Class Incremental Learning
Hikmat Khan
N. Bouaynaya
Ghulam Rasool
CLL
245
1
0
22 Apr 2024
Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective
Yiming Liu
Kezhao Liu
Yao Xiao
Ziyi Dong
Xiaogang Xu
Pengxu Wei
Liang Lin
DiffM
216
2
0
22 Apr 2024
On adversarial training and the 1 Nearest Neighbor classifier
Amir Hagai
Yair Weiss
AAML
232
0
0
09 Apr 2024
LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks
International Conference on Learning Representations (ICLR), 2024
Jianlang Chen
Xuhong Ren
Qing Guo
Felix Juefei Xu
Di Lin
Wei Feng
Lei Ma
Jianjun Zhao
216
6
0
09 Apr 2024
Adversarial Guided Diffusion Models for Adversarial Purification
Neural Networks (NN), 2024
Guang Lin
Zerui Tao
Jianhai Zhang
Toshihisa Tanaka
Qibin Zhao
525
5
0
24 Mar 2024
Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume
IEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2024
Ping Guo
Cheng Gong
Xi Lin
Zhiyuan Yang
Qingfu Zhang
AAML
214
4
0
08 Mar 2024
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge
L. Fenaux
Florian Kerschbaum
AAML
297
0
0
22 Feb 2024
Your Diffusion Model is Secretly a Certifiably Robust Classifier
Huanran Chen
Yinpeng Dong
Shitong Shao
Zhongkai Hao
Xiao Yang
Hang Su
Jun Zhu
DiffM
334
6
0
04 Feb 2024
MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers
Yatong Bai
Mo Zhou
Vishal M. Patel
Somayeh Sojoudi
AAML
343
16
0
03 Feb 2024
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
Guang Lin
Chao Li
Jianhai Zhang
Toshihisa Tanaka
Qibin Zhao
287
22
0
29 Jan 2024
Hijacking Attacks against Neural Networks by Analyzing Training Data
Yunjie Ge
Qian Wang
Huayang Huang
Qi Li
Cong Wang
Chao Shen
Lingchen Zhao
Peipei Jiang
Zheng Fang
Shenyi Zhang
197
0
0
18 Jan 2024
Robustness Against Adversarial Attacks via Learning Confined Adversarial Polytopes
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2024
Shayan Mohajer Hamidi
Linfeng Ye
AAML
154
3
0
15 Jan 2024
Adversarial Examples are Misaligned in Diffusion Model Manifolds
IEEE International Joint Conference on Neural Network (IJCNN), 2024
P. Lorenz
Ricard Durall
Jansi Keuper
DiffM
423
1
0
12 Jan 2024
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on Model Confidence
Stephen Obadinma
Xiaodan Zhu
Hongyu Guo
AAML
244
2
0
05 Jan 2024
1
2
3
4
Next