Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04244
Cited By
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
7 March 2021
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications"
12 / 12 papers shown
Title
Investigating the Duality of Interpretability and Explainability in Machine Learning
Moncef Garouani
Josiane Mothe
Ayah Barhrhouj
Julien Aligon
AAML
34
2
0
27 Mar 2025
What If We Had Used a Different App? Reliable Counterfactual KPI Analysis in Wireless Systems
Qiushuo Hou
Sangwoo Park
Matteo Zecchin
Yunlong Cai
Guanding Yu
Osvaldo Simeone
24
1
0
30 Sep 2024
Black-Box Access is Insufficient for Rigorous AI Audits
Stephen Casper
Carson Ezell
Charlotte Siegmann
Noam Kolt
Taylor Lynn Curtis
...
Michael Gerovitch
David Bau
Max Tegmark
David M. Krueger
Dylan Hadfield-Menell
AAML
13
76
0
25 Jan 2024
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
18
0
0
29 Sep 2022
Let's Go to the Alien Zoo: Introducing an Experimental Framework to Study Usability of Counterfactual Explanations for Machine Learning
Ulrike Kuhl
André Artelt
Barbara Hammer
27
17
0
06 May 2022
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
20
22
0
21 Apr 2022
Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
Md. Naimul Hoque
Klaus Mueller
CML
46
30
0
03 Jan 2021
An Interpretable Probabilistic Approach for Demystifying Black-box Predictive Models
Catarina Moreira
Yu-Liang Chou
M. Velmurugan
Chun Ouyang
Renuka Sindhgatta
P. Bruza
31
57
0
21 Jul 2020
What is "Intelligent" in Intelligent User Interfaces? A Meta-Analysis of 25 Years of IUI
Sarah Theres Volkel
Christina Schneegass
Malin Eiband
Daniel Buschek
20
41
0
06 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
49
93
0
05 Mar 2020
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
243
890
0
11 Nov 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1