Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
2103.10974
Cited By
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Science Advances (Sci Adv), 2021
19 March 2021
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Github (342★)
Papers citing
"Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets"
50 / 377 papers shown
Title
Kernel Methods are Competitive for Operator Learning
Journal of Computational Physics (JCP), 2023
Pau Batlle
Matthieu Darcy
Bamdad Hosseini
H. Owhadi
265
62
0
26 Apr 2023
A Bi-fidelity DeepONet Approach for Modeling Uncertain and Degrading Hysteretic Systems
Subhayan De
P. Brewick
188
0
0
25 Apr 2023
Efficient Bayesian inference using physics-informed invertible neural networks for inverse problems
Xiaofei Guan
Xintong Wang
Hao Wu
Zihao Yang
Peng Yu
PINN
237
16
0
25 Apr 2023
In-Context Operator Learning with Data Prompts for Differential Equation Problems
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
Liu Yang
Siting Liu
Tingwei Meng
Stanley J. Osher
310
89
0
17 Apr 2023
Learning in latent spaces improves the predictive accuracy of deep neural operators
Katiana Kontolati
S. Goswami
George Karniadakis
Michael D. Shields
AI4CE
214
24
0
15 Apr 2023
Variational operator learning: A unified paradigm marrying training neural operators and solving partial differential equations
Journal of the mechanics and physics of solids (JMPS), 2023
Tengfei Xu
Dachuan Liu
Peng Hao
Bo Wang
296
10
0
09 Apr 2023
A Framework for Combustion Chemistry Acceleration with DeepONets
Anuj Kumar
T. Echekki
111
2
0
06 Apr 2023
Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data
Journal of Machine Learning for Modeling and Computing (JMLMC), 2023
Joseph L. Hart
Mamikon A. Gulian
Indu Manickam
L. Swiler
185
10
0
20 Mar 2023
A Multifidelity deep operator network approach to closure for multiscale systems
Computer Methods in Applied Mechanics and Engineering (CMAME), 2023
Shady E. Ahmed
P. Stinis
AI4CE
185
20
0
15 Mar 2023
Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review
Applied Mechanics Review (AMR), 2023
Hanxun Jin
Enrui Zhang
H. Espinosa
AI4CE
412
98
0
14 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Social Science Research Network (SSRN), 2023
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
211
26
0
03 Mar 2023
GNOT: A General Neural Operator Transformer for Operator Learning
International Conference on Machine Learning (ICML), 2023
Zhongkai Hao
Zhengyi Wang
Hang Su
Chengyang Ying
Yinpeng Dong
Songming Liu
Ze Cheng
Jian Song
Jun Zhu
AI4CE
251
287
0
28 Feb 2023
DeepOHeat: Operator Learning-based Ultra-fast Thermal Simulation in 3D-IC Design
Design Automation Conference (DAC), 2023
Ziyue Liu
Yixing Li
Jing Hu
Xinling Yu
Shi-En Shiau
Xin Ai
Zhiyu Zeng
Zheng Zhang
AI4CE
129
40
0
25 Feb 2023
Elliptic PDE learning is provably data-efficient
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
N. Boullé
Diana Halikias
Alex Townsend
326
32
0
24 Feb 2023
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
International Conference on Machine Learning (ICML), 2023
Xinquan Huang
Wenlei Shi
Qi Meng
Yue Wang
Xiaotian Gao
Jia Zhang
Tie-Yan Liu
AI4CE
194
12
0
20 Feb 2023
The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach
Yongcun Song
Xiaoming Yuan
Hangrui Yue
PINN
178
0
0
16 Feb 2023
Magnetohydrodynamics with Physics Informed Neural Operators
S. Rosofsky
Eliu A. Huerta
AI4CE
137
17
0
13 Feb 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
692
12
0
10 Feb 2023
Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains
International Journal for Numerical Methods in Engineering (IJNME), 2023
Ali Harandi
Ahmad Moeineddin
Michael Kaliske
Stefanie Reese
Shahed Rezaei
AI4CE
PINN
196
57
0
09 Feb 2023
IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning
Journal of Computational Physics (JCP), 2023
Ling Guo
Hao Wu
Wenwen Zhou
Yan Wang
Tao Zhou
UQCV
272
21
0
07 Feb 2023
A neural operator-based surrogate solver for free-form electromagnetic inverse design
ACS Photonics (ACS Photonics), 2023
Yannick Augenstein
T. Repän
C. Rockstuhl
AI4CE
197
37
0
04 Feb 2023
Convolutional Neural Operators for robust and accurate learning of PDEs
Neural Information Processing Systems (NeurIPS), 2023
Bogdan Raonić
Roberto Molinaro
Tim De Ryck
Tobias Rohner
Francesca Bartolucci
Rima Alaifari
Siddhartha Mishra
Emmanuel de Bezenac
AAML
421
159
0
02 Feb 2023
Learning Functional Transduction
Neural Information Processing Systems (NeurIPS), 2023
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
334
4
0
01 Feb 2023
Neural Control of Parametric Solutions for High-dimensional Evolution PDEs
Nathan Gaby
X. Ye
Haomin Zhou
303
9
0
31 Jan 2023
Physics-constrained 3D Convolutional Neural Networks for Electrodynamics
APL Machine Learning (AML), 2023
A. Scheinker
R. Pokharel
118
16
0
31 Jan 2023
Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning
Hrishikesh Viswanath
Md Ashiqur Rahman
Abhijeet Vyas
Andrey Shor
Beatriz Medeiros
Stephanie Hernandez
S. Prameela
Aniket Bera
PINN
AI4CE
264
7
0
30 Jan 2023
On Approximating the Dynamic Response of Synchronous Generators via Operator Learning: A Step Towards Building Deep Operator-based Power Grid Simulators
Christian Moya
Guang Lin
Amirthagunaraj Yogarathnam
Meng Yue
153
13
0
29 Jan 2023
TransNet: Transferable Neural Networks for Partial Differential Equations
Zezhong Zhang
F. Bao
L. Ju
Guannan Zhang
164
35
0
27 Jan 2023
Random Grid Neural Processes for Parametric Partial Differential Equations
International Conference on Machine Learning (ICML), 2023
Arnaud Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
236
11
0
26 Jan 2023
Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems
International Conference on Learning Representations (ICLR), 2023
Z. Y. Wan
Leonardo Zepeda-Núñez
Anudhyan Boral
Fei Sha
BDL
AI4CE
194
14
0
25 Jan 2023
Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life
Engineering applications of artificial intelligence (Eng. Appl. Artif. Intell.), 2023
Kazuma Kobayashi
S. B. Alam
199
95
0
17 Jan 2023
L-HYDRA: Multi-Head Physics-Informed Neural Networks
Zongren Zou
George Karniadakis
AI4CE
130
39
0
05 Jan 2023
Metalearning generalizable dynamics from trajectories
Physical Review Letters (PRL), 2023
Qiaofeng Li
Tianyi Wang
V. Roychowdhury
M. Jawed
AI4CE
275
13
0
03 Jan 2023
Deep Learning and Computational Physics (Lecture Notes)
Deep Ray
Orazio Pinti
Assad A. Oberai
PINN
AI4CE
130
8
0
03 Jan 2023
INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Ning Liu
Yue Yu
Huaiqian You
Neeraj Tatikola
AI4CE
214
31
0
29 Dec 2022
Guiding continuous operator learning through Physics-based boundary constraints
International Conference on Learning Representations (ICLR), 2022
Nadim Saad
Gaurav Gupta
S. Alizadeh
Danielle C. Maddix
AI4CE
213
26
0
14 Dec 2022
Reliable extrapolation of deep neural operators informed by physics or sparse observations
Social Science Research Network (SSRN), 2022
Min Zhu
Handi Zhang
Anran Jiao
George Karniadakis
Lu Lu
227
124
0
13 Dec 2022
Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations
AAAI Conference on Artificial Intelligence (AAAI), 2022
Wuzhe Xu
Yulong Lu
Li Wang
178
42
0
09 Dec 2022
Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations
International Conference on Cloud Computing and Intelligence Systems (ICCCIS), 2022
Yemo Li
Yiwen Pang
Bin Shan
AI4CE
226
8
0
08 Dec 2022
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Inverse Problems (IP), 2022
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
235
50
0
06 Dec 2022
WarpPINN: Cine-MR image registration with physics-informed neural networks
Pablo Arratia López
Hernán Mella
S. Uribe
D. Hurtado
F. Sahli Costabal
58
27
0
22 Nov 2022
Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems
Journal of Computational and Applied Mathematics (JCAM), 2022
Xiongbin Yan
Z. Xu
Zheng Ma
190
3
0
22 Nov 2022
Physics-Informed Koopman Network
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
AI4CE
200
3
0
17 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
322
149
0
15 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
S. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
210
66
0
14 Nov 2022
Adaptive physics-informed neural operator for coarse-grained non-equilibrium flows
Scientific Reports (Sci Rep), 2022
Ivan Zanardi
Simone Venturi
M. Panesi
AI4CE
222
22
0
27 Oct 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
221
34
0
27 Oct 2022
Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation
Journal of Scientific Computing (J. Sci. Comput.), 2022
A. Ivagnes
N. Demo
G. Rozza
MedIm
AI4CE
154
9
0
26 Oct 2022
Bayesian deep learning framework for uncertainty quantification in high dimensions
Jeahan Jung
Minseok Choi
BDL
UQCV
124
1
0
21 Oct 2022
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Journal of Computational Physics (JCP), 2022
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
242
33
0
06 Oct 2022
Previous
1
2
3
4
5
6
7
8
Next