Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.12828
Cited By
Learning to Optimize: A Primer and A Benchmark
23 March 2021
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Optimize: A Primer and A Benchmark"
24 / 24 papers shown
Title
Optimization Problem Solving Can Transition to Evolutionary Agentic Workflows
Wenhao Li
Bo Jin
Mingyi Hong
Changhong Lu
Xiangfeng Wang
36
0
0
07 May 2025
Unveiling and Mitigating Adversarial Vulnerabilities in Iterative Optimizers
Elad Sofer
Tomer Shaked
Caroline Chaux
Nir Shlezinger
AAML
28
0
0
26 Apr 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning
Long Zhou
Fereshteh Shakeri
Aymen Sadraoui
Mounir Kaaniche
J. Pesquet
Ismail Ben Ayed
VLM
72
0
0
21 Dec 2024
On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
Renpu Liu
Ruida Zhou
Cong Shen
Jing Yang
18
0
0
17 Oct 2024
Self-Supervised Learning of Iterative Solvers for Constrained Optimization
Lukas Luken
Sergio Lucia
13
0
0
12 Sep 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
29
5
0
26 Aug 2024
Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure
Can Pouliquen
Mathurin Massias
Titouan Vayer
38
0
0
13 Jun 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
26
1
0
28 May 2024
ILILT: Implicit Learning of Inverse Lithography Technologies
Haoyu Yang
Haoxing Ren
23
3
0
06 May 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
15
11
0
22 Oct 2023
SF-SGL: Solver-Free Spectral Graph Learning from Linear Measurements
Ying Zhang
Zhiqiang Zhao
Zhuo Feng
22
2
0
09 Feb 2023
On Representing Linear Programs by Graph Neural Networks
Ziang Chen
Jialin Liu
Xinshang Wang
Jian Lu
W. Yin
AI4CE
36
31
0
25 Sep 2022
Self-Supervised Primal-Dual Learning for Constrained Optimization
Seonho Park
Pascal Van Hentenryck
15
45
0
18 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
22
3
0
05 Aug 2022
Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
14
6
0
16 Jun 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
19
36
0
27 May 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
50
42
0
01 Feb 2022
Iterative Amortized Policy Optimization
Joseph Marino
Alexandre Piché
Alessandro Davide Ialongo
Yisong Yue
OffRL
42
21
0
20 Oct 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
35
21
0
22 Jul 2020
L
2
^2
2
-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
GNN
83
76
0
30 Mar 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
143
198
0
04 Mar 2020
End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction
Zhong-Qiu Wang
Jonathan Le Roux
DeLiang Wang
J. Hershey
71
122
0
26 Apr 2018
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
V. Papyan
Yaniv Romano
Michael Elad
48
283
0
27 Jul 2016
1