Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.13646
Cited By
Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels
25 March 2021
Evgenii Zheltonozhskii
Chaim Baskin
A. Mendelson
A. Bronstein
Or Litany
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels"
20 / 20 papers shown
Title
Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization
Kuan Zhang
Chengliang Chai
Jingzhe Xu
Chi Zhang
Ye Yuan
Guoren Wang
Lei Cao
NoLa
54
0
0
01 May 2025
Learning from Noisy Labels for Long-tailed Data via Optimal Transport
Mengting Li
Chuang Zhu
34
0
0
07 Aug 2024
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Junru Chen
Tianyu Cao
Ninon De Mecquenem
Jiahe Li
Zhilong Chen
F. Friederici
Yang Yang
38
1
0
31 Jul 2024
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
28
1
0
31 May 2023
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
28
4
0
13 May 2023
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Vivien A. Cabannes
Léon Bottou
Yann LeCun
Randall Balestriero
40
13
0
27 Mar 2023
Learning from Noisy Labels with Decoupled Meta Label Purifier
Yuanpeng Tu
Boshen Zhang
Yuxi Li
Liang Liu
Jian Li
Yabiao Wang
Chengjie Wang
C. Zhao
NoLa
33
27
0
14 Feb 2023
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Manyi Zhang
Xuyang Zhao
Jun Yao
Chun Yuan
Weiran Huang
30
19
0
20 Nov 2022
The Dynamic of Consensus in Deep Networks and the Identification of Noisy Labels
Daniel Shwartz
Uri Stern
D. Weinshall
NoLa
33
2
0
02 Oct 2022
Learning from Noisy Labels with Coarse-to-Fine Sample Credibility Modeling
Boshen Zhang
Yuxi Li
Yuanpeng Tu
Jinlong Peng
Yabiao Wang
Cunlin Wu
Yanghua Xiao
Cairong Zhao
NoLa
31
6
0
23 Aug 2022
Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning
D. Hoang
Cuong C. Nguyen
Cuong Nguyen anh Belagiannis Vasileios
G. Carneiro
13
2
0
17 Aug 2022
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels
Ganlong Zhao
Guanbin Li
Yipeng Qin
Feng Liu
Yizhou Yu
NoLa
19
22
0
29 Jul 2022
Selective-Supervised Contrastive Learning with Noisy Labels
Shikun Li
Xiaobo Xia
Shiming Ge
Tongliang Liu
NoLa
19
172
0
08 Mar 2022
L2B: Learning to Bootstrap Robust Models for Combating Label Noise
Yuyin Zhou
Xianhang Li
Fengze Liu
Qingyue Wei
Xuxi Chen
Lequan Yu
Cihang Xie
M. Lungren
Lei Xing
NoLa
39
3
0
09 Feb 2022
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
19
18
0
22 Nov 2021
Adaptive Sample Selection for Robust Learning under Label Noise
Deep Patel
P. Sastry
OOD
NoLa
28
29
0
29 Jun 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
26
103
0
10 May 2021
Contrastive Learning Improves Model Robustness Under Label Noise
Aritra Ghosh
Andrew S. Lan
NoLa
19
58
0
19 Apr 2021
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
141
622
0
21 Jul 2020
SaaS: Speed as a Supervisor for Semi-supervised Learning
Safa Cicek
Alhussein Fawzi
Stefano Soatto
BDL
16
19
0
02 May 2018
1