ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.00031
  4. Cited By
NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network
  Training and Architecture Optimization

NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization

31 March 2021
Tien-Ju Yang
Yi-Lun Liao
Vivienne Sze
ArXiv (abs)PDFHTML

Papers citing "NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization"

41 / 41 papers shown
Title
Pixel-level Certified Explanations via Randomized Smoothing
Pixel-level Certified Explanations via Randomized Smoothing
Alaa Anani
Tobias Lorenz
Mario Fritz
Bernt Schiele
FAttAAML
41
0
0
18 Jun 2025
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable
Shreyash Arya
Sukrut Rao
Moritz Bohle
Bernt Schiele
184
3
0
28 Jan 2025
Learning local discrete features in explainable-by-design convolutional
  neural networks
Learning local discrete features in explainable-by-design convolutional neural networks
Pantelis I. Kaplanoglou
Konstantinos Diamantaras
FAtt
99
1
0
31 Oct 2024
Unlearning-based Neural Interpretations
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
262
0
0
10 Oct 2024
Benchmarking the Attribution Quality of Vision Models
Benchmarking the Attribution Quality of Vision Models
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
FAtt
87
3
0
16 Jul 2024
Attri-Net: A Globally and Locally Inherently Interpretable Model for
  Multi-Label Classification Using Class-Specific Counterfactuals
Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals
Susu Sun
S. Woerner
Andreas Maier
Lisa M. Koch
Christian F. Baumgartner
FAtt
72
1
0
08 Jun 2024
How Video Meetings Change Your Expression
How Video Meetings Change Your Expression
Sumit Sarin
Utkarsh Mall
Purva Tendulkar
Carl Vondrick
CVBM
93
0
0
03 Jun 2024
Towards Explaining Hypercomplex Neural Networks
Towards Explaining Hypercomplex Neural Networks
Eleonora Lopez
Eleonora Grassucci
D. Capriotti
Danilo Comminiello
98
3
0
26 Mar 2024
Explainable Transformer Prototypes for Medical Diagnoses
Explainable Transformer Prototypes for Medical Diagnoses
Ugur Demir
Debesh Jha
Zheyu Zhang
Elif Keles
Bradley Allen
Aggelos K. Katsaggelos
Ulas Bagci
MedIm
37
3
0
11 Mar 2024
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGeVLM
296
3
0
28 Dec 2023
Explainability of Vision Transformers: A Comprehensive Review and New
  Perspectives
Explainability of Vision Transformers: A Comprehensive Review and New Perspectives
Rojina Kashefi
Leili Barekatain
Mohammad Sabokrou
Fatemeh Aghaeipoor
ViT
105
10
0
12 Nov 2023
Greedy PIG: Adaptive Integrated Gradients
Greedy PIG: Adaptive Integrated Gradients
Kyriakos Axiotis
Sami Abu-El-Haija
Lin Chen
Matthew Fahrbach
Gang Fu
FAtt
60
0
0
10 Nov 2023
A Framework for Interpretability in Machine Learning for Medical Imaging
A Framework for Interpretability in Machine Learning for Medical Imaging
Alan Q. Wang
Batuhan K. Karaman
Heejong Kim
Jacob Rosenthal
Rachit Saluja
Sean I. Young
M. Sabuncu
AI4CE
128
13
0
02 Oct 2023
From Classification to Segmentation with Explainable AI: A Study on
  Crack Detection and Growth Monitoring
From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring
Florent Forest
Hugo Porta
D. Tuia
Olga Fink
85
11
0
20 Sep 2023
On Model Explanations with Transferable Neural Pathways
On Model Explanations with Transferable Neural Pathways
Xinmiao Lin
Wentao Bao
Qi Yu
Yu Kong
37
0
0
18 Sep 2023
Text-to-Image Models for Counterfactual Explanations: a Black-Box
  Approach
Text-to-Image Models for Counterfactual Explanations: a Black-Box Approach
Guillaume Jeanneret
Loïc Simon
Frédéric Jurie
DiffM
95
13
0
14 Sep 2023
PDiscoNet: Semantically consistent part discovery for fine-grained
  recognition
PDiscoNet: Semantically consistent part discovery for fine-grained recognition
Robert van der Klis
Stephan Alaniz
Massimiliano Mancini
C. Dantas
Dino Ienco
Zeynep Akata
Diego Marcos
84
12
0
06 Sep 2023
DeViL: Decoding Vision features into Language
DeViL: Decoding Vision features into Language
Meghal Dani
Isabel Rio-Torto
Stephan Alaniz
Zeynep Akata
VLM
75
8
0
04 Sep 2023
FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of
  Explainable AI Methods
FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
AAML
81
34
0
11 Aug 2023
Right for the Wrong Reason: Can Interpretable ML Techniques Detect
  Spurious Correlations?
Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?
Susu Sun
Lisa M. Koch
Christian F. Baumgartner
84
16
0
23 Jul 2023
B-cos Alignment for Inherently Interpretable CNNs and Vision
  Transformers
B-cos Alignment for Inherently Interpretable CNNs and Vision Transformers
Moritz D Boehle
Navdeeppal Singh
Mario Fritz
Bernt Schiele
157
27
0
19 Jun 2023
Probabilistic Concept Bottleneck Models
Probabilistic Concept Bottleneck Models
Eunji Kim
Dahuin Jung
Sangha Park
Siwon Kim
Sung-Hoon Yoon
143
72
0
02 Jun 2023
Towards credible visual model interpretation with path attribution
Towards credible visual model interpretation with path attribution
Naveed Akhtar
Muhammad A. A. K. Jalwana
FAtt
141
5
0
23 May 2023
Better Understanding Differences in Attribution Methods via Systematic
  Evaluations
Better Understanding Differences in Attribution Methods via Systematic Evaluations
Sukrut Rao
Moritz D Boehle
Bernt Schiele
XAI
93
4
0
21 Mar 2023
Adversarial Counterfactual Visual Explanations
Adversarial Counterfactual Visual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
102
29
0
17 Mar 2023
Inherently Interpretable Multi-Label Classification Using Class-Specific
  Counterfactuals
Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals
Susu Sun
S. Woerner
Andreas Maier
Lisa M. Koch
Christian F. Baumgartner
FAtt
98
17
0
01 Mar 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
106
14
0
06 Feb 2023
Neural Insights for Digital Marketing Content Design
Neural Insights for Digital Marketing Content Design
F. Kong
Yuan Li
Houssam Nassif
Tanner Fiez
Ricardo Henao
Shreya Chakrabarti
3DV
58
12
0
02 Feb 2023
Holistically Explainable Vision Transformers
Holistically Explainable Vision Transformers
Moritz D Boehle
Mario Fritz
Bernt Schiele
ViT
95
9
0
20 Jan 2023
Evaluating Feature Attribution Methods for Electrocardiogram
Evaluating Feature Attribution Methods for Electrocardiogram
J. Suh
Jimyeong Kim
Euna Jung
Wonjong Rhee
FAtt
45
2
0
23 Nov 2022
"Help Me Help the AI": Understanding How Explainability Can Support
  Human-AI Interaction
"Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Sunnie S. Y. Kim
E. A. Watkins
Olga Russakovsky
Ruth C. Fong
Andrés Monroy-Hernández
99
115
0
02 Oct 2022
Interpretable by Design: Learning Predictors by Composing Interpretable
  Queries
Interpretable by Design: Learning Predictors by Composing Interpretable Queries
Aditya Chattopadhyay
Stewart Slocum
B. Haeffele
René Vidal
D. Geman
111
24
0
03 Jul 2022
Towards Better Understanding Attribution Methods
Towards Better Understanding Attribution Methods
Sukrut Rao
Moritz Bohle
Bernt Schiele
XAI
89
33
0
20 May 2022
B-cos Networks: Alignment is All We Need for Interpretability
B-cos Networks: Alignment is All We Need for Interpretability
Moritz D Boehle
Mario Fritz
Bernt Schiele
105
86
0
20 May 2022
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic
  Filter Attention
Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention
Yu Yang
Seung Wook Kim
Jungseock Joo
FAtt
61
17
0
10 Apr 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
118
59
0
29 Mar 2022
A Cognitive Explainer for Fetal ultrasound images classifier Based on
  Medical Concepts
A Cognitive Explainer for Fetal ultrasound images classifier Based on Medical Concepts
Ying-Shuai Wanga
Yunxia Liua
Licong Dongc
Xuzhou Wua
Huabin Zhangb
Qiongyu Yed
Desheng Sunc
Xiaobo Zhoue
Kehong Yuan
59
0
0
19 Jan 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations
HIVE: Evaluating the Human Interpretability of Visual Explanations
Sunnie S. Y. Kim
Nicole Meister
V. V. Ramaswamy
Ruth C. Fong
Olga Russakovsky
161
119
0
06 Dec 2021
Optimising for Interpretability: Convolutional Dynamic Alignment
  Networks
Optimising for Interpretability: Convolutional Dynamic Alignment Networks
Moritz D Boehle
Mario Fritz
Bernt Schiele
21
2
0
27 Sep 2021
A Comparison of Deep Saliency Map Generators on Multispectral Data in
  Object Detection
A Comparison of Deep Saliency Map Generators on Multispectral Data in Object Detection
Jens Bayer
David Munch
Michael Arens
3DPC
66
4
0
26 Aug 2021
A Survey on Deep Domain Adaptation and Tiny Object Detection Challenges,
  Techniques and Datasets
A Survey on Deep Domain Adaptation and Tiny Object Detection Challenges, Techniques and Datasets
Muhammed Muzammul
Xi Li
ObjD
96
11
0
16 Jul 2021
1