ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05932
  4. Cited By
VR3Dense: Voxel Representation Learning for 3D Object Detection and
  Monocular Dense Depth Reconstruction

VR3Dense: Voxel Representation Learning for 3D Object Detection and Monocular Dense Depth Reconstruction

13 April 2021
Shubham Shrivastava
    3DPC
    MDE
ArXivPDFHTML

Papers citing "VR3Dense: Voxel Representation Learning for 3D Object Detection and Monocular Dense Depth Reconstruction"

2 / 2 papers shown
Title
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
  Convolutional Neural Networks
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
Martin Engelcke
Dushyant Rao
Dominic Zeng Wang
Chi Hay Tong
Ingmar Posner
3DPC
192
521
0
21 Sep 2016
1