Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2104.06643
Cited By
Generative Causal Explanations for Graph Neural Networks
14 April 2021
Wanyu Lin
Hao Lan
Baochun Li
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generative Causal Explanations for Graph Neural Networks"
33 / 33 papers shown
Title
Causal invariant geographic network representations with feature and structural distribution shifts
Yuhan Wang
Silu He
Qinyao Luo
Hongyuan Yuan
Ling Zhao
Jiawei Zhu
Haifeng Li
OOD
64
0
0
25 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
68
2
0
14 Feb 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
46
7
0
31 Dec 2024
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
61
0
0
29 Oct 2024
Causality-inspired Latent Feature Augmentation for Single Domain Generalization
Jian Xu
Chaojie Ji
Yankai Cao
Ye Li
Ruxin Wang
OOD
24
0
0
10 Jun 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
37
3
0
21 May 2024
Incorporating Retrieval-based Causal Learning with Information Bottlenecks for Interpretable Graph Neural Networks
Jiahua Rao
Jiancong Xie
Hanjing Lin
Shuangjia Zheng
Zhen Wang
Yuedong Yang
19
0
0
07 Feb 2024
Coca: Improving and Explaining Graph Neural Network-Based Vulnerability Detection Systems
Sicong Cao
Xiaobing Sun
Xiaoxue Wu
David Lo
Lili Bo
Bin Li
Wei Liu
AAML
27
12
0
26 Jan 2024
Towards Fine-Grained Explainability for Heterogeneous Graph Neural Network
Tong Li
Jiale Deng
Yanyan Shen
Luyu Qiu
Hu Yongxiang
Caleb Chen Cao
23
5
0
23 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
36
2
0
19 Dec 2023
Robust Ante-hoc Graph Explainer using Bilevel Optimization
Kha-Dinh Luong
Mert Kosan
A. Silva
Ambuj K. Singh
32
6
0
25 May 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
30
0
0
14 Apr 2023
Decision Support System for Chronic Diseases Based on Drug-Drug Interactions
Tian Bian
Yuli Jiang
Jia Li
Tingyang Xu
Yu Rong
Yi Su
Timothy S. H. Kwok
H. Meng
Hongtao Cheng
19
2
0
04 Mar 2023
ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
Juntao Tan
Yongfeng Zhang
17
6
0
27 Jan 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
23
31
0
04 Jan 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
32
4
0
30 Dec 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
31
7
0
28 Sep 2022
BusyBot: Learning to Interact, Reason, and Plan in a BusyBoard Environment
Zeyi Liu
Zhenjia Xu
Shuran Song
30
2
0
17 Jul 2022
Features Based Adaptive Augmentation for Graph Contrastive Learning
Adnan Ali
Jinlong Li
OOD
24
7
0
05 Jul 2022
Towards Faithful and Consistent Explanations for Graph Neural Networks
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
FAtt
45
18
0
27 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
Wanyu Lin
Hao Lan
Hao Wang
Baochun Li
BDL
CML
25
50
0
29 Mar 2022
Task-Agnostic Graph Explanations
Yaochen Xie
S. Katariya
Xianfeng Tang
E-Wen Huang
Nikhil S. Rao
Karthik Subbian
Shuiwang Ji
38
25
0
16 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
196
0
31 Jan 2022
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
31
38
0
19 Jan 2022
Causal Attention for Interpretable and Generalizable Graph Classification
Yongduo Sui
Xiang Wang
Jiancan Wu
Min-Bin Lin
Xiangnan He
Tat-Seng Chua
CML
OOD
17
152
0
30 Dec 2021
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CML
OOD
OODD
AI4CE
39
81
0
20 Nov 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
19
51
0
16 Jun 2021
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng-Long Jiang
CML
OOD
20
93
0
03 Jun 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
21
38
0
18 May 2021
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
20
20
0
07 Dec 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
18
215
0
05 Jun 2020
1