ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.02575
  4. Cited By
Direct Prediction of Steady-State Flow Fields in Meshed Domain with
  Graph Networks

Direct Prediction of Steady-State Flow Fields in Meshed Domain with Graph Networks

6 May 2021
Lukas Harsch
S. Riedelbauch
    AI4CE
ArXivPDFHTML

Papers citing "Direct Prediction of Steady-State Flow Fields in Meshed Domain with Graph Networks"

10 / 10 papers shown
Title
C(NN)FD -- Deep Learning Modelling of Multi-Stage Axial Compressors Aerodynamics
C(NN)FD -- Deep Learning Modelling of Multi-Stage Axial Compressors Aerodynamics
G. Bruni
S. Maleki
S. Krishnababu
AI4CE
47
0
0
18 Mar 2025
Large-scale flood modeling and forecasting with FloodCast
Large-scale flood modeling and forecasting with FloodCast
Qingsong Xu
Yilei Shi
Jonathan Bamber
Chaojun Ouyang
Xiao Xiang Zhu
AI4CE
39
12
0
18 Mar 2024
Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics
Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics
G. Bruni
Md Tahmid Rahman Laskar
Jimmy X. Huang
AI4CE
18
0
0
06 Oct 2023
C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
G. Bruni
S. Maleki
S. Krishnababu
AI4CE
11
4
0
09 Jun 2023
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
  regression of physical problems under non-parameterized geometrical
  variability
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
F. Casenave
B. Staber
Xavier Roynard
AI4CE
19
13
0
22 May 2023
A composable machine-learning approach for steady-state simulations on
  high-resolution grids
A composable machine-learning approach for steady-state simulations on high-resolution grids
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
17
7
0
11 Oct 2022
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Yadi Cao
Menglei Chai
Minchen Li
Chenfanfu Jiang
AI4CE
21
18
0
05 Oct 2022
Deep Surrogate for Direct Time Fluid Dynamics
Deep Surrogate for Direct Time Fluid Dynamics
Lucas Meyer
Louen Pottier
Alejandro Ribés
Bruno Raffin
AI4CE
11
7
0
16 Dec 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
58
0
15 Sep 2021
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
165
161
0
15 Jun 2018
1