Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.02575
Cited By
Direct Prediction of Steady-State Flow Fields in Meshed Domain with Graph Networks
6 May 2021
Lukas Harsch
S. Riedelbauch
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Direct Prediction of Steady-State Flow Fields in Meshed Domain with Graph Networks"
10 / 10 papers shown
Title
C(NN)FD -- Deep Learning Modelling of Multi-Stage Axial Compressors Aerodynamics
G. Bruni
S. Maleki
S. Krishnababu
AI4CE
49
0
0
18 Mar 2025
Large-scale flood modeling and forecasting with FloodCast
Qingsong Xu
Yilei Shi
Jonathan Bamber
Chaojun Ouyang
Xiao Xiang Zhu
AI4CE
39
12
0
18 Mar 2024
Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics
G. Bruni
Md Tahmid Rahman Laskar
Jimmy X. Huang
AI4CE
18
0
0
06 Oct 2023
C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
G. Bruni
S. Maleki
S. Krishnababu
AI4CE
11
4
0
09 Jun 2023
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
F. Casenave
B. Staber
Xavier Roynard
AI4CE
19
13
0
22 May 2023
A composable machine-learning approach for steady-state simulations on high-resolution grids
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
17
7
0
11 Oct 2022
Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN
Yadi Cao
Menglei Chai
Minchen Li
Chenfanfu Jiang
AI4CE
27
18
0
05 Oct 2022
Deep Surrogate for Direct Time Fluid Dynamics
Lucas Meyer
Louen Pottier
Alejandro Ribés
Bruno Raffin
AI4CE
13
7
0
16 Dec 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
58
0
15 Sep 2021
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
165
161
0
15 Jun 2018
1