Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.07878
Cited By
A Review on Explainability in Multimodal Deep Neural Nets
17 May 2021
Gargi Joshi
Rahee Walambe
K. Kotecha
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Review on Explainability in Multimodal Deep Neural Nets"
19 / 19 papers shown
Title
Towards Vision-Language Mechanistic Interpretability: A Causal Tracing Tool for BLIP
Vedant Palit
Rohan Pandey
Aryaman Arora
Paul Pu Liang
16
20
0
27 Aug 2023
Causal Intersectionality and Dual Form of Gradient Descent for Multimodal Analysis: a Case Study on Hateful Memes
Yosuke Miyanishi
M. Nguyen
24
2
0
19 Aug 2023
Patchwork Learning: A Paradigm Towards Integrative Analysis across Diverse Biomedical Data Sources
Suraj Rajendran
Weishen Pan
M. Sabuncu
Yong Chen
Jiayu Zhou
Fei Wang
49
14
0
10 May 2023
Interpretable multimodal sentiment analysis based on textual modality descriptions by using large-scale language models
Sixia Li
S. Okada
25
3
0
07 May 2023
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
19
4
0
09 Nov 2022
Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-modal Fake News Detection
Jinyin Chen
Chengyu Jia
Haibin Zheng
Ruoxi Chen
Chenbo Fu
AAML
22
9
0
17 Jun 2022
Explainable Misinformation Detection Across Multiple Social Media Platforms
Gargi Joshi
Ananya Srivastava
Bhargav D. Yagnik
Md Musleh Uddin Hasan
Zainuddin Saiyed
Lubna A Gabralla
Ajith Abraham
Rahee Walambe
K. Kotecha
21
17
0
20 Mar 2022
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
34
409
0
11 Nov 2021
HEROHE Challenge: assessing HER2 status in breast cancer without immunohistochemistry or in situ hybridization
Eduardo Conde-Sousa
João Vale
Ming Feng
Kele Xu
Yin Wang
...
Guilherme Aresta
Teresa Araújo
Paulo Aguiar
C. Eloy
A. Polónia
20
28
0
08 Nov 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Guang Yang
Qinghao Ye
Jun Xia
87
478
0
03 Feb 2021
Beyond VQA: Generating Multi-word Answer and Rationale to Visual Questions
Radhika Dua
Sai Srinivas Kancheti
V. Balasubramanian
LRM
30
22
0
24 Oct 2020
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies
Itai Gat
Idan Schwartz
A. Schwing
Tamir Hazan
51
88
0
21 Oct 2020
Multimodal Research in Vision and Language: A Review of Current and Emerging Trends
Shagun Uppal
Sarthak Bhagat
Devamanyu Hazarika
Navonil Majumdar
Soujanya Poria
Roger Zimmermann
Amir Zadeh
18
6
0
19 Oct 2020
Semantics of the Black-Box: Can knowledge graphs help make deep learning systems more interpretable and explainable?
Manas Gaur
Keyur Faldu
A. Sheth
29
110
0
16 Oct 2020
Deep-HOSeq: Deep Higher Order Sequence Fusion for Multimodal Sentiment Analysis
Sunny Verma
Jiwei Wang
Zhefeng Ge
Rujia Shen
Fan Jin
Yang Wang
Fang Chen
Wei Liu
14
20
0
16 Oct 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,231
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui
Dong Huk Park
Daylen Yang
Anna Rohrbach
Trevor Darrell
Marcus Rohrbach
144
1,458
0
06 Jun 2016
1