ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.07878
  4. Cited By
A Review on Explainability in Multimodal Deep Neural Nets

A Review on Explainability in Multimodal Deep Neural Nets

17 May 2021
Gargi Joshi
Rahee Walambe
K. Kotecha
ArXivPDFHTML

Papers citing "A Review on Explainability in Multimodal Deep Neural Nets"

19 / 19 papers shown
Title
Towards Vision-Language Mechanistic Interpretability: A Causal Tracing
  Tool for BLIP
Towards Vision-Language Mechanistic Interpretability: A Causal Tracing Tool for BLIP
Vedant Palit
Rohan Pandey
Aryaman Arora
Paul Pu Liang
16
20
0
27 Aug 2023
Causal Intersectionality and Dual Form of Gradient Descent for
  Multimodal Analysis: a Case Study on Hateful Memes
Causal Intersectionality and Dual Form of Gradient Descent for Multimodal Analysis: a Case Study on Hateful Memes
Yosuke Miyanishi
M. Nguyen
24
2
0
19 Aug 2023
Patchwork Learning: A Paradigm Towards Integrative Analysis across
  Diverse Biomedical Data Sources
Patchwork Learning: A Paradigm Towards Integrative Analysis across Diverse Biomedical Data Sources
Suraj Rajendran
Weishen Pan
M. Sabuncu
Yong Chen
Jiayu Zhou
Fei Wang
49
14
0
10 May 2023
Interpretable multimodal sentiment analysis based on textual modality
  descriptions by using large-scale language models
Interpretable multimodal sentiment analysis based on textual modality descriptions by using large-scale language models
Sixia Li
S. Okada
25
3
0
07 May 2023
On the Robustness of Explanations of Deep Neural Network Models: A
  Survey
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
19
4
0
09 Nov 2022
Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-modal
  Fake News Detection
Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-modal Fake News Detection
Jinyin Chen
Chengyu Jia
Haibin Zheng
Ruoxi Chen
Chenbo Fu
AAML
22
9
0
17 Jun 2022
Explainable Misinformation Detection Across Multiple Social Media
  Platforms
Explainable Misinformation Detection Across Multiple Social Media Platforms
Gargi Joshi
Ananya Srivastava
Bhargav D. Yagnik
Md Musleh Uddin Hasan
Zainuddin Saiyed
Lubna A Gabralla
Ajith Abraham
Rahee Walambe
K. Kotecha
21
17
0
20 Mar 2022
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and
  Future Opportunities
Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities
Waddah Saeed
C. Omlin
XAI
34
409
0
11 Nov 2021
HEROHE Challenge: assessing HER2 status in breast cancer without
  immunohistochemistry or in situ hybridization
HEROHE Challenge: assessing HER2 status in breast cancer without immunohistochemistry or in situ hybridization
Eduardo Conde-Sousa
João Vale
Ming Feng
Kele Xu
Yin Wang
...
Guilherme Aresta
Teresa Araújo
Paulo Aguiar
C. Eloy
A. Polónia
20
28
0
08 Nov 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
Unbox the Black-box for the Medical Explainable AI via Multi-modal and
  Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Guang Yang
Qinghao Ye
Jun Xia
87
478
0
03 Feb 2021
Beyond VQA: Generating Multi-word Answer and Rationale to Visual
  Questions
Beyond VQA: Generating Multi-word Answer and Rationale to Visual Questions
Radhika Dua
Sai Srinivas Kancheti
V. Balasubramanian
LRM
30
22
0
24 Oct 2020
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing
  Functional Entropies
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies
Itai Gat
Idan Schwartz
A. Schwing
Tamir Hazan
51
88
0
21 Oct 2020
Multimodal Research in Vision and Language: A Review of Current and
  Emerging Trends
Multimodal Research in Vision and Language: A Review of Current and Emerging Trends
Shagun Uppal
Sarthak Bhagat
Devamanyu Hazarika
Navonil Majumdar
Soujanya Poria
Roger Zimmermann
Amir Zadeh
18
6
0
19 Oct 2020
Semantics of the Black-Box: Can knowledge graphs help make deep learning
  systems more interpretable and explainable?
Semantics of the Black-Box: Can knowledge graphs help make deep learning systems more interpretable and explainable?
Manas Gaur
Keyur Faldu
A. Sheth
29
110
0
16 Oct 2020
Deep-HOSeq: Deep Higher Order Sequence Fusion for Multimodal Sentiment
  Analysis
Deep-HOSeq: Deep Higher Order Sequence Fusion for Multimodal Sentiment Analysis
Sunny Verma
Jiwei Wang
Zhefeng Ge
Rujia Shen
Fan Jin
Yang Wang
Fang Chen
Wei Liu
14
20
0
16 Oct 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,231
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,658
0
28 Feb 2017
Multimodal Compact Bilinear Pooling for Visual Question Answering and
  Visual Grounding
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui
Dong Huk Park
Daylen Yang
Anna Rohrbach
Trevor Darrell
Marcus Rohrbach
144
1,458
0
06 Jun 2016
1