Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.09506
Cited By
Physics-informed neural networks (PINNs) for fluid mechanics: A review
20 May 2021
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed neural networks (PINNs) for fluid mechanics: A review"
46 / 96 papers shown
Title
Temporal Consistency Loss for Physics-Informed Neural Networks
Sukirt Thakur
M. Raissi
H. Mitra
A. Ardekani
PINN
33
10
0
30 Jan 2023
Super-Resolution Analysis via Machine Learning: A Survey for Fluid Flows
Kai Fukami
K. Fukagata
Kunihiko Taira
AI4CE
14
104
0
26 Jan 2023
Physics-informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media
Salah A. Faroughi
Ramin Soltanmohammad
Pingki Datta
S. K. Mahjour
S. Faroughi
18
22
0
17 Dec 2022
Physics-Constrained Generative Adversarial Networks for 3D Turbulence
D. Tretiak
A. Mohan
Daniel Livescu
GAN
AI4CE
PINN
16
2
0
01 Dec 2022
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
23
6
0
28 Nov 2022
Machine Learning for Smart and Energy-Efficient Buildings
Hari Prasanna Das
Yu-Wen Lin
Utkarsha Agwan
Lucas Spangher
Alex Devonport
Yu Yang
Ján Drgoňa
A. Chong
S. Schiavon
C. Spanos
HAI
AI4CE
31
19
0
27 Nov 2022
A Physics-informed Diffusion Model for High-fidelity Flow Field Reconstruction
Dule Shu
Zijie Li
A. Farimani
DiffM
AI4CE
35
124
0
26 Nov 2022
DS-GPS : A Deep Statistical Graph Poisson Solver (for faster CFD simulations)
Matthieu Nastorg
Marc Schoenauer
Guillaume Charpiat
T. Faney
J. Gratien
M. Bucci
14
2
0
21 Nov 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
49
0
14 Nov 2022
Physics-informed neural networks for gravity currents reconstruction from limited data
Mickaël G. Delcey
Y. Cheny
S. Richter
PINN
AI4CE
19
11
0
03 Nov 2022
Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems
Daniel Kelshaw
Georgios Rigas
Luca Magri
AI4CE
37
17
0
31 Oct 2022
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
22
16
0
24 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
Machine learning in bioprocess development: From promise to practice
L. M. Helleckes
J. Hemmerich
W. Wiechert
E. Lieres
A. Grünberger
21
47
0
04 Oct 2022
On Physics-Informed Neural Networks for Quantum Computers
Stefano Markidis
PINN
32
18
0
28 Sep 2022
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)
Paul Novello
Gaël Poëtte
D. Lugato
S. Peluchon
P. Congedo
AI4CE
19
7
0
27 Sep 2022
Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
25
32
0
07 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
24
3
0
06 Sep 2022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
32
36
0
25 Aug 2022
Physics-informed neural networks for diffraction tomography
Amirhossein Saba
Carlo Gigli
Ahmed B. Ayoub
D. Psaltis
MedIm
AI4CE
19
31
0
28 Jul 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
Physics-Informed Neural Networks for Shell Structures
Jan-Hendrik Bastek
D. Kochmann
AI4CE
16
51
0
26 Jul 2022
Human Trajectory Prediction via Neural Social Physics
Jiangbei Yue
Tianyi Zhou
He-Nan Wang
AI4CE
24
100
0
21 Jul 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
19
6
0
29 Jun 2022
A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method
Shahed Rezaei
Ali Harandi
Ahmad Moeineddin
Bai-Xiang Xu
Stefanie Reese
21
112
0
27 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
25
14
0
29 May 2022
DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D Microscopic Imaging using Digital Holography
Xiwen Chen
Hongya Wang
Abofazl Razi
M. Kozicki
C. Mann
DiffM
17
1
0
25 May 2022
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
26
37
0
03 Apr 2022
Calibrating constitutive models with full-field data via physics informed neural networks
Craig M. Hamel
K. Long
S. Kramer
AI4CE
27
28
0
30 Mar 2022
Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
19
23
0
03 Mar 2022
Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks
Y. Yasuda
R. Onishi
19
5
0
22 Feb 2022
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
24
34
0
08 Feb 2022
Physics-informed neural networks for non-Newtonian fluid thermo-mechanical problems: an application to rubber calendering process
Thi Nguyen Khoa Nguyen
T. Dairay
Raphael Meunier
Mathilde Mougeot
PINN
AI4CE
81
29
0
31 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Hierarchical Learning to Solve Partial Differential Equations Using Physics-Informed Neural Networks
Jihun Han
Yoonsang Lee
AI4CE
22
10
0
02 Dec 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
382
0
06 Nov 2021
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
16
139
0
14 Oct 2021
Simulating progressive intramural damage leading to aortic dissection using an operator-regression neural network
Minglang Yin
Ehsan Ban
B. Rego
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
AI4CE
26
52
0
25 Aug 2021
IDRLnet: A Physics-Informed Neural Network Library
Wei Peng
Jun Zhang
Weien Zhou
Xiaoyu Zhao
W. Yao
Xiaoqian Chen
PINN
AI4CE
33
15
0
09 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
64
0
02 Jul 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
759
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
125
508
0
11 Mar 2020
Previous
1
2