ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.12909
  4. Cited By
Deconditional Downscaling with Gaussian Processes

Deconditional Downscaling with Gaussian Processes

27 May 2021
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
    BDL
ArXivPDFHTML

Papers citing "Deconditional Downscaling with Gaussian Processes"

23 / 23 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
59
0
0
26 May 2025
Integral Imprecise Probability Metrics
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
61
0
0
22 May 2025
Convolutional conditional neural processes for local climate downscaling
Convolutional conditional neural processes for local climate downscaling
Anna Vaughan
Will Tebbutt
J. S. Hosking
Richard Turner
BDL
43
47
0
20 Jan 2021
Inter-domain Deep Gaussian Processes
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
16
11
0
01 Nov 2020
ClimAlign: Unsupervised statistical downscaling of climate variables via
  normalizing flows
ClimAlign: Unsupervised statistical downscaling of climate variables via normalizing flows
Brian Groenke
Luke Madaus
C. Monteleoni
BDL
22
46
0
11 Aug 2020
Learning from Aggregate Observations
Learning from Aggregate Observations
Yivan Zhang
Nontawat Charoenphakdee
Zheng Wu
Masashi Sugiyama
30
28
0
14 Apr 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
282
42,038
0
03 Dec 2019
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
Yusuke Tanaka
Toshiyuki Tanaka
Tomoharu Iwata
Takeshi Kurashima
Maya Okawa
Yasunori Akagi
Hiroyuki Toda
25
27
0
19 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
31
34
0
22 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
45
38
0
19 Jun 2019
Kernel Instrumental Variable Regression
Kernel Instrumental Variable Regression
Rahul Singh
M. Sahani
Arthur Gretton
74
172
0
01 Jun 2019
Bayesian Deconditional Kernel Mean Embeddings
Bayesian Deconditional Kernel Mean Embeddings
Kelvin Hsu
F. Ramos
CML
BDL
18
9
0
01 Jun 2019
Hyperparameter Learning via Distributional Transfer
Hyperparameter Learning via Distributional Transfer
H. Law
P. Zhao
Lucian Chan
Junzhou Huang
Dino Sejdinovic
57
25
0
15 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
68
1,088
0
28 Sep 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
39
38
0
22 May 2018
DeepSD: Generating High Resolution Climate Change Projections through
  Single Image Super-Resolution
DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution
T. Vandal
E. Kodra
S. Ganguly
A. Michaelis
R. Nemani
A. Ganguly
AI4Cl
28
279
0
09 Mar 2017
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
72
732
0
31 May 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
902
149,474
0
22 Dec 2014
Learning Theory for Distribution Regression
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
39
138
0
08 Nov 2014
Kernel Mean Shrinkage Estimators
Kernel Mean Shrinkage Estimators
Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
48
52
0
21 May 2014
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
78
1,178
0
02 Nov 2012
Conditional mean embeddings as regressors - supplementary
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
102
144
0
21 May 2012
Gaussian Process Regression Networks
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
122
192
0
19 Oct 2011
1