Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.12909
Cited By
Deconditional Downscaling with Gaussian Processes
27 May 2021
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deconditional Downscaling with Gaussian Processes"
23 / 23 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
59
0
0
26 May 2025
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
61
0
0
22 May 2025
Convolutional conditional neural processes for local climate downscaling
Anna Vaughan
Will Tebbutt
J. S. Hosking
Richard Turner
BDL
43
47
0
20 Jan 2021
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
16
11
0
01 Nov 2020
ClimAlign: Unsupervised statistical downscaling of climate variables via normalizing flows
Brian Groenke
Luke Madaus
C. Monteleoni
BDL
22
46
0
11 Aug 2020
Learning from Aggregate Observations
Yivan Zhang
Nontawat Charoenphakdee
Zheng Wu
Masashi Sugiyama
30
28
0
14 Apr 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
282
42,038
0
03 Dec 2019
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
Yusuke Tanaka
Toshiyuki Tanaka
Tomoharu Iwata
Takeshi Kurashima
Maya Okawa
Yasunori Akagi
Hiroyuki Toda
25
27
0
19 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
31
34
0
22 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
45
38
0
19 Jun 2019
Kernel Instrumental Variable Regression
Rahul Singh
M. Sahani
Arthur Gretton
74
172
0
01 Jun 2019
Bayesian Deconditional Kernel Mean Embeddings
Kelvin Hsu
F. Ramos
CML
BDL
18
9
0
01 Jun 2019
Hyperparameter Learning via Distributional Transfer
H. Law
P. Zhao
Lucian Chan
Junzhou Huang
Dino Sejdinovic
57
25
0
15 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
68
1,088
0
28 Sep 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
39
38
0
22 May 2018
DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution
T. Vandal
E. Kodra
S. Ganguly
A. Michaelis
R. Nemani
A. Ganguly
AI4Cl
28
279
0
09 Mar 2017
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
72
732
0
31 May 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
902
149,474
0
22 Dec 2014
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
39
138
0
08 Nov 2014
Kernel Mean Shrinkage Estimators
Krikamol Muandet
Bharath K. Sriperumbudur
Kenji Fukumizu
Arthur Gretton
Bernhard Schölkopf
48
52
0
21 May 2014
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
78
1,178
0
02 Nov 2012
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
102
144
0
21 May 2012
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
122
192
0
19 Oct 2011
1