Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.13343
Cited By
Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error
27 May 2021
Stanislav Fort
Andrew Brock
Razvan Pascanu
Soham De
Samuel L. Smith
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error"
10 / 10 papers shown
Title
Poly-View Contrastive Learning
Amitis Shidani
Devon Hjelm
Jason Ramapuram
Russ Webb
Eeshan Gunesh Dhekane
Dan Busbridge
VLM
SSL
34
4
0
08 Mar 2024
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
26
35
0
12 Oct 2022
Extreme Masking for Learning Instance and Distributed Visual Representations
Zhirong Wu
Zihang Lai
Xiao Sun
Stephen Lin
32
22
0
09 Jun 2022
Deep AutoAugment
Yu Zheng
Z. Zhang
Shen Yan
Mi Zhang
ViT
21
26
0
11 Mar 2022
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
30
14
0
07 Mar 2022
Using Soft Labels to Model Uncertainty in Medical Image Segmentation
Joao Lourencco Silva
Arlindo L. Oliveira
UQCV
16
19
0
26 Sep 2021
Encoder-Decoder Architectures for Clinically Relevant Coronary Artery Segmentation
Joao Lourencco Silva
M. Menezes
T. Rodrigues
B. Silva
F. Pinto
Arlindo L. Oliveira
MedIm
31
17
0
21 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,889
0
15 Sep 2016
1