Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.00736
Cited By
v1
v2 (latest)
Large-Scale Wasserstein Gradient Flows
1 June 2021
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Large-Scale Wasserstein Gradient Flows"
50 / 52 papers shown
Title
From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
Pourya Shamsolmoali
Masoumeh Zareapoor
Huiyu Zhou
Michael Felsberg
Dacheng Tao
Xuelong Li
DiffM
103
0
0
19 Apr 2025
Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
Zhong Li
Qi Huang
Lincen Yang
Jiayang Shi
Zhao Yang
Niki van Stein
Thomas Bäck
M. Leeuwen
DiffM
118
0
0
24 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
106
0
0
25 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
104
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
131
2
0
08 Jan 2025
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
132
2
0
03 Jan 2025
Path-Guided Particle-based Sampling
Mingzhou Fan
Ruida Zhou
C. Tian
Xiaoning Qian
124
7
0
04 Dec 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
151
0
0
03 Oct 2024
Relative-Translation Invariant Wasserstein Distance
Binshuai Wang
Qiwei Di
Ming Yin
Mengdi Wang
Quanquan Gu
Peng Wei
67
0
0
04 Sep 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Learning Diffusion at Lightspeed
Antonio Terpin
Nicolas Lanzetti
Florian Dorfler
DiffM
105
9
0
18 Jun 2024
Forward-Euler time-discretization for Wasserstein gradient flows can be wrong
Yewei Xu
Qin Li
87
1
0
12 Jun 2024
Optimal State Estimation in the Presence of Non-Gaussian Uncertainty via Wasserstein Distance Minimization
Himanshu Prabhat
Raktim Bhattacharya
77
1
0
06 Mar 2024
Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myungjoo Kang
127
11
0
08 Feb 2024
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
72
8
0
25 Jan 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
61
5
0
20 Jan 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
109
3
0
13 Dec 2023
Convergence of flow-based generative models via proximal gradient descent in Wasserstein space
Xiuyuan Cheng
Jianfeng Lu
Yixin Tan
Yao Xie
201
19
0
26 Oct 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
106
23
0
16 Oct 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
116
25
0
04 Oct 2023
Generating Synthetic Datasets by Interpolating along Generalized Geodesics
JiaoJiao Fan
David Alvarez-Melis
104
10
0
12 Jun 2023
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Jean-Yves Franceschi
Mike Gartrell
Ludovic Dos Santos
Thibaut Issenhuth
Emmanuel de Bezenac
Mickaël Chen
A. Rakotomamonjy
DiffM
97
23
0
25 May 2023
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
97
27
0
19 May 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
72
5
0
17 May 2023
Energy-guided Entropic Neural Optimal Transport
Petr Mokrov
Alexander Korotin
Alexander Kolesov
Nikita Gushchin
Evgeny Burnaev
OT
152
23
0
12 Apr 2023
Generative Modeling with Flow-Guided Density Ratio Learning
Alvin Heng
Abdul Fatir Ansari
Harold Soh
60
1
0
07 Mar 2023
Entropy-dissipation Informed Neural Network for McKean-Vlasov Type PDEs
Zebang Shen
Zhenfu Wang
104
5
0
11 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
108
15
0
31 Jan 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
79
14
0
27 Jan 2023
Normalizing flow neural networks by JKO scheme
Chen Xu
Xiuyuan Cheng
Yao Xie
107
30
0
29 Dec 2022
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
102
20
0
30 Nov 2022
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
98
20
0
25 Nov 2022
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
77
1
0
25 Oct 2022
On amortizing convex conjugates for optimal transport
Brandon Amos
OT
161
28
0
21 Oct 2022
InfoOT: Information Maximizing Optimal Transport
Ching-Yao Chuang
Stefanie Jegelka
David Alvarez-Melis
OT
112
12
0
06 Oct 2022
Batch Bayesian Optimization via Particle Gradient Flows
Enrico Crovini
S. Cotter
K. Zygalakis
Andrew B. Duncan
65
3
0
10 Sep 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
90
24
0
29 Jun 2022
Supervised Training of Conditional Monge Maps
Charlotte Bunne
Andreas Krause
Marco Cuturi
OT
145
65
0
28 Jun 2022
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
103
24
0
10 Jun 2022
Self-Consistency of the Fokker-Planck Equation
Zebang Shen
Zhenfu Wang
Satyen Kale
Alejandro Ribeiro
Aim Karbasi
Hamed Hassani
83
21
0
02 Jun 2022
Neural Optimal Transport with General Cost Functionals
Arip Asadulaev
Alexander Korotin
Vage Egiazarian
Petr Mokrov
Evgeny Burnaev
OT
124
34
0
30 May 2022
Learning with Stochastic Orders
Carles Domingo-Enrich
Yair Schiff
Youssef Mroueh
66
2
0
27 May 2022
A Distributed Algorithm for Measure-valued Optimization with Additive Objective
Iman Nodozi
A. Halder
68
1
0
17 Feb 2022
Understanding DDPM Latent Codes Through Optimal Transport
Valentin Khrulkov
Gleb Ryzhakov
Andrei Chertkov
Ivan Oseledets
OT
DiffM
75
53
0
14 Feb 2022
Wasserstein Iterative Networks for Barycenter Estimation
Alexander Korotin
Vage Egiazarian
Lingxiao Li
Evgeny Burnaev
113
30
0
28 Jan 2022
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
94
1
0
28 Jan 2022
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
167
57
0
04 Dec 2021
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
70
15
0
23 Nov 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
141
21
0
21 Oct 2021
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
97
93
0
11 Jun 2021
1
2
Next