ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00736
  4. Cited By
Large-Scale Wasserstein Gradient Flows
v1v2 (latest)

Large-Scale Wasserstein Gradient Flows

1 June 2021
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
ArXiv (abs)PDFHTML

Papers citing "Large-Scale Wasserstein Gradient Flows"

50 / 52 papers shown
Title
From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
From Missing Pieces to Masterpieces: Image Completion with Context-Adaptive Diffusion
Pourya Shamsolmoali
Masoumeh Zareapoor
Huiyu Zhou
Michael Felsberg
Dacheng Tao
Xuelong Li
DiffM
103
0
0
19 Apr 2025
Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
Diffusion Models for Tabular Data: Challenges, Current Progress, and Future Directions
Zhong Li
Qi Huang
Lincen Yang
Jiayang Shi
Zhao Yang
Niki van Stein
Thomas Bäck
M. Leeuwen
DiffM
118
0
0
24 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
106
0
0
25 Jan 2025
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
104
0
0
11 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
131
2
0
08 Jan 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
132
2
0
03 Jan 2025
Path-Guided Particle-based Sampling
Path-Guided Particle-based Sampling
Mingzhou Fan
Ruida Zhou
C. Tian
Xiaoning Qian
124
7
0
04 Dec 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
151
0
0
03 Oct 2024
Relative-Translation Invariant Wasserstein Distance
Relative-Translation Invariant Wasserstein Distance
Binshuai Wang
Qiwei Di
Ming Yin
Mengdi Wang
Quanquan Gu
Peng Wei
67
0
0
04 Sep 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
102
2
0
29 Jul 2024
Learning Diffusion at Lightspeed
Learning Diffusion at Lightspeed
Antonio Terpin
Nicolas Lanzetti
Florian Dorfler
DiffM
105
9
0
18 Jun 2024
Forward-Euler time-discretization for Wasserstein gradient flows can be
  wrong
Forward-Euler time-discretization for Wasserstein gradient flows can be wrong
Yewei Xu
Qin Li
87
1
0
12 Jun 2024
Optimal State Estimation in the Presence of Non-Gaussian Uncertainty via
  Wasserstein Distance Minimization
Optimal State Estimation in the Presence of Non-Gaussian Uncertainty via Wasserstein Distance Minimization
Himanshu Prabhat
Raktim Bhattacharya
77
1
0
06 Mar 2024
Scalable Wasserstein Gradient Flow for Generative Modeling through
  Unbalanced Optimal Transport
Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myungjoo Kang
127
11
0
08 Feb 2024
Neural Sinkhorn Gradient Flow
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
72
8
0
25 Jan 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
61
5
0
20 Jan 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
109
3
0
13 Dec 2023
Convergence of flow-based generative models via proximal gradient
  descent in Wasserstein space
Convergence of flow-based generative models via proximal gradient descent in Wasserstein space
Xiuyuan Cheng
Jianfeng Lu
Yixin Tan
Yao Xie
201
19
0
26 Oct 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
106
23
0
16 Oct 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance Kernel
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
116
25
0
04 Oct 2023
Generating Synthetic Datasets by Interpolating along Generalized
  Geodesics
Generating Synthetic Datasets by Interpolating along Generalized Geodesics
JiaoJiao Fan
David Alvarez-Melis
104
10
0
12 Jun 2023
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Unifying GANs and Score-Based Diffusion as Generative Particle Models
Jean-Yves Franceschi
Mike Gartrell
Ludovic Dos Santos
Thibaut Issenhuth
Emmanuel de Bezenac
Mickaël Chen
A. Rakotomamonjy
DiffM
97
23
0
25 May 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz Kernels
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
97
27
0
19 May 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
72
5
0
17 May 2023
Energy-guided Entropic Neural Optimal Transport
Energy-guided Entropic Neural Optimal Transport
Petr Mokrov
Alexander Korotin
Alexander Kolesov
Nikita Gushchin
Evgeny Burnaev
OT
152
23
0
12 Apr 2023
Generative Modeling with Flow-Guided Density Ratio Learning
Generative Modeling with Flow-Guided Density Ratio Learning
Alvin Heng
Abdul Fatir Ansari
Harold Soh
60
1
0
07 Mar 2023
Entropy-dissipation Informed Neural Network for McKean-Vlasov Type PDEs
Entropy-dissipation Informed Neural Network for McKean-Vlasov Type PDEs
Zebang Shen
Zhenfu Wang
104
5
0
11 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
108
15
0
31 Jan 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
79
14
0
27 Jan 2023
Normalizing flow neural networks by JKO scheme
Normalizing flow neural networks by JKO scheme
Chen Xu
Xiuyuan Cheng
Yao Xie
107
30
0
29 Dec 2022
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the
  JKO Scheme
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
102
20
0
30 Nov 2022
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
98
20
0
25 Nov 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
77
1
0
25 Oct 2022
On amortizing convex conjugates for optimal transport
On amortizing convex conjugates for optimal transport
Brandon Amos
OT
161
28
0
21 Oct 2022
InfoOT: Information Maximizing Optimal Transport
InfoOT: Information Maximizing Optimal Transport
Ching-Yao Chuang
Stefanie Jegelka
David Alvarez-Melis
OT
112
12
0
06 Oct 2022
Batch Bayesian Optimization via Particle Gradient Flows
Batch Bayesian Optimization via Particle Gradient Flows
Enrico Crovini
S. Cotter
K. Zygalakis
Andrew B. Duncan
65
3
0
10 Sep 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
90
24
0
29 Jun 2022
Supervised Training of Conditional Monge Maps
Supervised Training of Conditional Monge Maps
Charlotte Bunne
Andreas Krause
Marco Cuturi
OT
145
65
0
28 Jun 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
103
24
0
10 Jun 2022
Self-Consistency of the Fokker-Planck Equation
Self-Consistency of the Fokker-Planck Equation
Zebang Shen
Zhenfu Wang
Satyen Kale
Alejandro Ribeiro
Aim Karbasi
Hamed Hassani
83
21
0
02 Jun 2022
Neural Optimal Transport with General Cost Functionals
Neural Optimal Transport with General Cost Functionals
Arip Asadulaev
Alexander Korotin
Vage Egiazarian
Petr Mokrov
Evgeny Burnaev
OT
124
34
0
30 May 2022
Learning with Stochastic Orders
Learning with Stochastic Orders
Carles Domingo-Enrich
Yair Schiff
Youssef Mroueh
66
2
0
27 May 2022
A Distributed Algorithm for Measure-valued Optimization with Additive
  Objective
A Distributed Algorithm for Measure-valued Optimization with Additive Objective
Iman Nodozi
A. Halder
68
1
0
17 Feb 2022
Understanding DDPM Latent Codes Through Optimal Transport
Understanding DDPM Latent Codes Through Optimal Transport
Valentin Khrulkov
Gleb Ryzhakov
Andrei Chertkov
Ivan Oseledets
OTDiffM
75
53
0
14 Feb 2022
Wasserstein Iterative Networks for Barycenter Estimation
Wasserstein Iterative Networks for Barycenter Estimation
Alexander Korotin
Vage Egiazarian
Lingxiao Li
Evgeny Burnaev
113
30
0
28 Jan 2022
Learning Proximal Operators to Discover Multiple Optima
Learning Proximal Operators to Discover Multiple Optima
Lingxiao Li
Noam Aigerman
Vladimir G. Kim
Jiajin Li
Kristjan Greenewald
Mikhail Yurochkin
Justin Solomon
94
1
0
28 Jan 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
167
57
0
04 Dec 2021
Input Convex Gradient Networks
Input Convex Gradient Networks
Jack Richter-Powell
Jonathan Lorraine
Brandon Amos
70
15
0
23 Nov 2021
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
141
21
0
21 Oct 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
97
93
0
11 Jun 2021
12
Next