ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.00761
  4. Cited By
Motif Prediction with Graph Neural Networks

Motif Prediction with Graph Neural Networks

26 May 2021
Maciej Besta
Raphael Grob
Cesare Miglioli
Nico Bernold
Grzegorz Kwa'sniewski
G. Gjini
Raghavendra Kanakagiri
Saleh Ashkboos
Lukas Gianinazzi
Nikoli Dryden
Torsten Hoefler
ArXivPDFHTML

Papers citing "Motif Prediction with Graph Neural Networks"

25 / 25 papers shown
Title
Deal: Distributed End-to-End GNN Inference for All Nodes
Shiyang Chen
Xiang Song
Vasiloudis Theodore
Hang Liu
GNN
50
0
0
04 Mar 2025
Demystifying Higher-Order Graph Neural Networks
Demystifying Higher-Order Graph Neural Networks
Maciej Besta
Florian Scheidl
Lukas Gianinazzi
S. Klaiman
Jürgen Müller
Torsten Hoefler
38
2
0
18 Jun 2024
Repeat-Aware Neighbor Sampling for Dynamic Graph Learning
Repeat-Aware Neighbor Sampling for Dynamic Graph Learning
Tao Zou
Yuhao Mao
Junchen Ye
Bo Du
22
2
0
24 May 2024
GPU-Accelerated Batch-Dynamic Subgraph Matching
GPU-Accelerated Batch-Dynamic Subgraph Matching
Linshan Qiu
Lu Chen
Hailiang Jie
Xiangyu Ke
Yunjun Gao
Yang Liu
Zetao Zhang
GNN
9
1
0
30 Jan 2024
Demystifying Chains, Trees, and Graphs of Thoughts
Demystifying Chains, Trees, and Graphs of Thoughts
Maciej Besta
Florim Memedi
Zhenyu Zhang
Robert Gerstenberger
Guangyuan Piao
...
Aleš Kubíček
H. Niewiadomski
Aidan O'Mahony
Onur Mutlu
Torsten Hoefler
AI4CE
LRM
63
26
0
25 Jan 2024
AdaFGL: A New Paradigm for Federated Node Classification with Topology
  Heterogeneity
AdaFGL: A New Paradigm for Federated Node Classification with Topology Heterogeneity
Xunkai Li
Zhengyu Wu
Wentao Zhang
Henan Sun
Ronghua Li
Guoren Wang
FedML
36
7
0
22 Jan 2024
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient
  Transformers
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers
Maciej Besta
Afonso Claudino Catarino
Lukas Gianinazzi
Nils Blach
Piotr Nyczyk
H. Niewiadomski
Torsten Hoefler
30
6
0
30 Nov 2023
Cached Operator Reordering: A Unified View for Fast GNN Training
Cached Operator Reordering: A Unified View for Fast GNN Training
Julia Bazinska
Andrei Ivanov
Tal Ben-Nun
Nikoli Dryden
Maciej Besta
Siyuan Shen
Torsten Hoefler
GNN
14
3
0
23 Aug 2023
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
Maciej Besta
Nils Blach
Aleš Kubíček
Robert Gerstenberger
Michal Podstawski
...
Joanna Gajda
Tomasz Lehmann
H. Niewiadomski
Piotr Nyczyk
Torsten Hoefler
LRM
AI4CE
LM&Ro
56
589
0
18 Aug 2023
Tango: rethinking quantization for graph neural network training on GPUs
Tango: rethinking quantization for graph neural network training on GPUs
Shiyang Chen
Da Zheng
Caiwen Ding
Chengying Huan
Yuede Ji
Hang Liu
GNN
MQ
23
5
0
02 Aug 2023
The Graph Database Interface: Scaling Online Transactional and
  Analytical Graph Workloads to Hundreds of Thousands of Cores
The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of Cores
Maciej Besta
Robert Gerstenberger
Marc Fischer
Michal Podstawski
Nils Blach
...
Wojciech Chlapek
M. Michalewicz
H. Niewiadomski
Juergen Mueller
Torsten Hoefler
8
9
0
18 May 2023
Sparse Hamming Graph: A Customizable Network-on-Chip Topology
Sparse Hamming Graph: A Customizable Network-on-Chip Topology
Patrick Iff
Maciej Besta
Matheus A. Cavalcante
Tim Fischer
Luca Benini
Torsten Hoefler
13
6
0
25 Nov 2022
Neural Graph Databases
Neural Graph Databases
Maciej Besta
Patrick Iff
Florian Scheidl
Kazuki Osawa
Nikoli Dryden
Michal Podstawski
Tiancheng Chen
Torsten Hoefler
AI4CE
45
9
0
20 Sep 2022
ProbGraph: High-Performance and High-Accuracy Graph Mining with
  Probabilistic Set Representations
ProbGraph: High-Performance and High-Accuracy Graph Mining with Probabilistic Set Representations
Maciej Besta
Cesare Miglioli
P. S. Labini
Jakub Tvetek
Patrick Iff
...
Grzegorz Kwa'sniewski
Niels Gleinig
Flavio Vella
O. Mutlu
Torsten Hoefler
18
8
0
24 Aug 2022
Approximate Network Motif Mining Via Graph Learning
Approximate Network Motif Mining Via Graph Learning
Carlos G. Oliver
Dexiong Chen
Vincent Mallet
P. Philippopoulos
Karsten M. Borgwardt
17
3
0
02 Jun 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
  Analysis
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
32
55
0
19 May 2022
Equivariant and Stable Positional Encoding for More Powerful Graph
  Neural Networks
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
25
106
0
01 Mar 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
SISA: Set-Centric Instruction Set Architecture for Graph Mining on
  Processing-in-Memory Systems
SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems
Maciej Besta
Raghavendra Kanakagiri
Grzegorz Kwa'sniewski
Rachata Ausavarungnirun
Jakub Beránek
...
Salvatore Di Girolamo
Marek Konieczny
Nils Blach
O. Mutlu
Torsten Hoefler
21
85
0
15 Apr 2021
SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing
SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing
Marcin Copik
Grzegorz Kwa'sniewski
Maciej Besta
Michal Podstawski
Torsten Hoefler
65
115
0
28 Dec 2020
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node
  Representation Learning
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning
Muhan Zhang
Pan Li
Yinglong Xia
Kai Wang
Long Jin
6
184
0
30 Oct 2020
SlimSell: A Vectorizable Graph Representation for Breadth-First Search
SlimSell: A Vectorizable Graph Representation for Breadth-First Search
Maciej Besta
Florian Marending
Edgar Solomonik
Torsten Hoefler
57
64
0
19 Oct 2020
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
170
170
0
09 Mar 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
Scaling betweenness centrality using communication-efficient sparse
  matrix multiplication
Scaling betweenness centrality using communication-efficient sparse matrix multiplication
Edgar Solomonik
Maciej Besta
Flavio Vella
Torsten Hoefler
49
77
0
22 Sep 2016
1