ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02733
  4. Cited By
DISCO: accurate Discrete Scale Convolutions

DISCO: accurate Discrete Scale Convolutions

4 June 2021
Ivan Sosnovik
A. Moskalev
A. Smeulders
ArXivPDFHTML

Papers citing "DISCO: accurate Discrete Scale Convolutions"

28 / 28 papers shown
Title
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
45
1
0
17 Sep 2024
Neural Operators with Localized Integral and Differential Kernels
Neural Operators with Localized Integral and Differential Kernels
Miguel Liu-Schiaffini
Julius Berner
Boris Bonev
Thorsten Kurth
Kamyar Azizzadenesheli
A. Anandkumar
58
18
0
26 Feb 2024
Unified theory for joint covariance properties under geometric image
  transformations for spatio-temporal receptive fields according to the
  generalized Gaussian derivative model for visual receptive fields
Unified theory for joint covariance properties under geometric image transformations for spatio-temporal receptive fields according to the generalized Gaussian derivative model for visual receptive fields
Tony Lindeberg
16
7
0
17 Nov 2023
Truly Scale-Equivariant Deep Nets with Fourier Layers
Truly Scale-Equivariant Deep Nets with Fourier Layers
Md Ashiqur Rahman
Raymond A. Yeh
47
8
0
06 Nov 2023
Color Equivariant Convolutional Networks
Color Equivariant Convolutional Networks
A. Lengyel
Ombretta Strafforello
Robert-Jan Bruintjes
Alexander Gielisse
J. C. V. Gemert
16
4
0
30 Oct 2023
On genuine invariance learning without weight-tying
On genuine invariance learning without weight-tying
A. Moskalev
A. Sepliarskaia
Erik J. Bekkers
A. Smeulders
CML
OOD
11
6
0
07 Aug 2023
Adaptive aggregation of Monte Carlo augmented decomposed filters for
  efficient group-equivariant convolutional neural network
Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
Wenzhao Zhao
Barbara D. Wichtmann
Steffen Albert
Angelika Maurer
F. G. Zollner
Ulrike Attenberger
Jurgen Hesser
22
1
0
17 May 2023
Scale-Equivariant Deep Learning for 3D Data
Scale-Equivariant Deep Learning for 3D Data
Thomas Wimmer
Vladimir Golkov
H. Dang
Moritz Zaiss
Andreas K. Maier
Daniel Cremers
3DPC
MedIm
18
5
0
12 Apr 2023
Rotation-Scale Equivariant Steerable Filters
Rotation-Scale Equivariant Steerable Filters
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
14
3
0
10 Apr 2023
Scale-Equivariant UNet for Histopathology Image Segmentation
Scale-Equivariant UNet for Histopathology Image Segmentation
Yi-Lun Yang
S. Dasmahapatra
S. Mahmoodi
20
11
0
10 Apr 2023
Covariance properties under natural image transformations for the
  generalized Gaussian derivative model for visual receptive fields
Covariance properties under natural image transformations for the generalized Gaussian derivative model for visual receptive fields
T. Lindeberg
21
11
0
17 Mar 2023
Deep Neural Networks with Efficient Guaranteed Invariances
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
A. P. Condurache
16
4
0
02 Mar 2023
Empowering Networks With Scale and Rotation Equivariance Using A
  Similarity Convolution
Empowering Networks With Scale and Rotation Equivariance Using A Similarity Convolution
Zikai Sun
T. Blu
13
6
0
01 Mar 2023
Modelling Long Range Dependencies in $N$D: From Task-Specific to a
  General Purpose CNN
Modelling Long Range Dependencies in NNND: From Task-Specific to a General Purpose CNN
David M. Knigge
David W. Romero
Albert Gu
E. Gavves
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
J. Sonke
3DV
27
21
0
25 Jan 2023
VC dimensions of group convolutional neural networks
VC dimensions of group convolutional neural networks
P. Petersen
A. Sepliarskaia
VLM
19
7
0
19 Dec 2022
Just a Matter of Scale? Reevaluating Scale Equivariance in Convolutional
  Neural Networks
Just a Matter of Scale? Reevaluating Scale Equivariance in Convolutional Neural Networks
Thomas Altstidl
A. Nguyen
Leo Schwinn
Franz Koferl
Christopher Mutschler
Björn Eskofier
Dario Zanca
17
2
0
18 Nov 2022
Scale Equivariant U-Net
Scale Equivariant U-Net
Mateus Sangalli
S. Blusseau
Santiago Velasco-Forero
Jesús Angulo
SSeg
25
12
0
10 Oct 2022
LieGG: Studying Learned Lie Group Generators
LieGG: Studying Learned Lie Group Generators
A. Moskalev
A. Sepliarskaia
Ivan Sosnovik
A. Smeulders
28
22
0
09 Oct 2022
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
Abhinav Kumar
Garrick Brazil
E. Corona
Armin Parchami
Xiaoming Liu
3DPC
MDE
21
60
0
21 Jul 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient
  Accelerated MRI Reconstruction
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
9
7
0
21 Apr 2022
Dilated convolution with learnable spacings
Dilated convolution with learnable spacings
Ismail Khalfaoui-Hassani
Thomas Pellegrini
T. Masquelier
8
31
0
07 Dec 2021
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
15
8
0
22 Nov 2021
Wiggling Weights to Improve the Robustness of Classifiers
Wiggling Weights to Improve the Robustness of Classifiers
Sadaf Gulshad
Ivan Sosnovik
A. Smeulders
OOD
26
0
0
18 Nov 2021
Exploiting Redundancy: Separable Group Convolutional Networks on Lie
  Groups
Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups
David M. Knigge
David W. Romero
Erik J. Bekkers
16
30
0
25 Oct 2021
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
11
23
0
11 Jun 2021
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
A. P. Condurache
ViT
AI4CE
27
9
0
30 Jun 2020
Siamese Box Adaptive Network for Visual Tracking
Siamese Box Adaptive Network for Visual Tracking
Zedu Chen
Bineng Zhong
Guorong Li
Shengping Zhang
Rongrong Ji
86
662
0
15 Mar 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
151
308
0
05 Nov 2018
1