Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.05203
Cited By
EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback
9 June 2021
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback"
25 / 25 papers shown
Title
Convergence Analysis of Asynchronous Federated Learning with Gradient Compression for Non-Convex Optimization
Diying Yang
Yingwei Hou
Danyang Xiao
Weigang Wu
FedML
34
0
0
28 Apr 2025
Striving for Simplicity: Simple Yet Effective Prior-Aware Pseudo-Labeling for Semi-Supervised Ultrasound Image Segmentation
Yaxiong Chen
Yujie Wang
Zixuan Zheng
Jingliang Hu
Yilei Shi
Shengwu Xiong
Xiao Xiang Zhu
Lichao Mou
52
0
0
18 Mar 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
43
0
0
11 Mar 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
28
0
0
11 Nov 2024
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
30
0
0
08 Aug 2024
Communication-efficient Vertical Federated Learning via Compressed Error Feedback
Pedro Valdeira
João Xavier
Cláudia Soares
Yuejie Chi
FedML
30
4
0
20 Jun 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
34
3
0
07 Mar 2024
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
23
4
0
10 Jan 2024
Kimad: Adaptive Gradient Compression with Bandwidth Awareness
Jihao Xin
Ivan Ilin
Shunkang Zhang
Marco Canini
Peter Richtárik
28
2
0
13 Dec 2023
Federated Learning is Better with Non-Homomorphic Encryption
Konstantin Burlachenko
Abdulmajeed Alrowithi
Fahad Ali Albalawi
Peter Richtárik
FedML
22
6
0
04 Dec 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
32
5
0
15 Oct 2023
Asynchronous Federated Learning with Bidirectional Quantized Communications and Buffered Aggregation
Tomàs Ortega
Hamid Jafarkhani
FedML
19
6
0
01 Aug 2023
Clip21: Error Feedback for Gradient Clipping
Sarit Khirirat
Eduard A. Gorbunov
Samuel Horváth
Rustem Islamov
Fakhri Karray
Peter Richtárik
25
10
0
30 May 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
13
2
0
24 May 2023
Convergence and Privacy of Decentralized Nonconvex Optimization with Gradient Clipping and Communication Compression
Boyue Li
Yuejie Chi
21
12
0
17 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
26
7
0
12 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
18
5
0
23 Apr 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
19
9
0
14 Jan 2023
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
10
12
0
31 Oct 2022
High Probability Bounds for Stochastic Subgradient Schemes with Heavy Tailed Noise
D. A. Parletta
Andrea Paudice
Massimiliano Pontil
Saverio Salzo
26
9
0
17 Aug 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
17
47
0
15 Feb 2022
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
12
124
0
25 Aug 2020
1