ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06596
  4. Cited By
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect

Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect

11 June 2021
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
    CML
ArXivPDFHTML

Papers citing "Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect"

18 / 18 papers shown
Title
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
52
0
0
02 Mar 2025
Evaluating Bayesian deep learning for radio galaxy classification
Evaluating Bayesian deep learning for radio galaxy classification
Devina Mohan
Anna M. M. Scaife
UQCV
BDL
39
1
0
28 May 2024
Can a Confident Prior Replace a Cold Posterior?
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCV
BDL
24
4
0
02 Mar 2024
Variational Learning is Effective for Large Deep Networks
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
35
22
0
27 Feb 2024
If there is no underfitting, there is no Cold Posterior Effect
If there is no underfitting, there is no Cold Posterior Effect
Yijie Zhang
Yi-Shan Wu
Luis A. Ortega
A. Masegosa
UQCV
21
1
0
02 Oct 2023
The fine print on tempered posteriors
The fine print on tempered posteriors
Konstantinos Pitas
Julyan Arbel
25
1
0
11 Sep 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
34
9
0
04 Apr 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
29
6
0
10 Mar 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
16
52
0
11 Nov 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
  Processes
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
16
5
0
14 Oct 2022
Variational Inference of overparameterized Bayesian Neural Networks: a
  theoretical and empirical study
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
8
6
0
08 Jul 2022
Robustness to corruption in pre-trained Bayesian neural networks
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
9
4
0
24 Jun 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
21
5
0
22 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
72
8
0
27 May 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
21
48
0
30 Mar 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural
  Representations for Computed Tomography
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
24
12
0
22 Feb 2022
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
14
37
0
10 Jun 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
1