ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07971
  4. Cited By
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond

Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond

15 June 2021
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
ArXivPDFHTML

Papers citing "Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond"

40 / 40 papers shown
Title
Conformation Generation using Transformer Flows
Sohil Shah
V. Koltun
MedIm
AI4CE
21
0
0
16 Nov 2024
Harnessing the Power of Noise: A Survey of Techniques and Applications
Harnessing the Power of Noise: A Survey of Techniques and Applications
Reyhaneh Abdolazimi
Shengmin Jin
Pramod K. Varshney
Reza Zafarani
16
0
0
08 Oct 2024
Advancing Molecular Machine (Learned) Representations with
  Stereoelectronics-Infused Molecular Graphs
Advancing Molecular Machine (Learned) Representations with Stereoelectronics-Infused Molecular Graphs
Daniil A. Boiko
Thiago Reschutzegger
Benjamín Sánchez-Lengeling
Samuel M. Blau
Gabe Gomes
GNN
AI4CE
15
1
0
08 Aug 2024
Evaluating representation learning on the protein structure universe
Evaluating representation learning on the protein structure universe
Arian R. Jamasb
Alex Morehead
Chaitanya K. Joshi
Zuobai Zhang
Kieran Didi
...
Charles Harris
Jian Tang
Jianlin Cheng
Pietro Lio
Tom L. Blundell
SSL
31
12
0
19 Jun 2024
DualBind: A Dual-Loss Framework for Protein-Ligand Binding Affinity
  Prediction
DualBind: A Dual-Loss Framework for Protein-Ligand Binding Affinity Prediction
Meng Liu
Saee Paliwal
21
0
0
11 Jun 2024
On the Scalability of GNNs for Molecular Graphs
On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Dominique Beaini
GNN
AI4CE
34
11
0
17 Apr 2024
Entropy Aware Message Passing in Graph Neural Networks
Entropy Aware Message Passing in Graph Neural Networks
Philipp Nazari
Oliver Lemke
Davide Guidobene
Artiom Gesp
25
0
0
07 Mar 2024
PASCL: Supervised Contrastive Learning with Perturbative Augmentation
  for Particle Decay Reconstruction
PASCL: Supervised Contrastive Learning with Perturbative Augmentation for Particle Decay Reconstruction
Junjian Lu
Siwei Liu
Dmitrii Kobylianski
Etienne Dreyer
Eilam Gross
Shangsong Liang
19
3
0
18 Feb 2024
Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular
  Property Prediction: A Systematic Survey
Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
Taojie Kuang
Pengfei Liu
Zhixiang Ren
AI4CE
37
1
0
11 Feb 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular
  Graph Learning with Triplet Graph Transformers
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
19
4
0
07 Feb 2024
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
24
9
0
03 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating
  Electronic Structure Calculations
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
11
2
0
02 Nov 2023
Generating QM1B with PySCF$_{\text{IPU}}$
Generating QM1B with PySCFIPU_{\text{IPU}}IPU​
Alexander Mathiasen
Hatem Helal
Kerstin Klaser
Paul Balanca
Josef Dean
Carlo Luschi
Dominique Beaini
Andrew Fitzgibbon
Dominic Masters
18
1
0
02 Nov 2023
Improving Compositional Generalization Using Iterated Learning and
  Simplicial Embeddings
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings
Yi Ren
Samuel Lavoie
Mikhail Galkin
Danica J. Sutherland
Aaron Courville
25
15
0
28 Oct 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D
  Molecular Conformations
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
14
9
0
24 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
30
25
0
20 Jul 2023
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
Filip Ekstrom Kelvinius
D. Georgiev
Artur P. Toshev
Johannes Gasteiger
19
6
0
26 Jun 2023
Principles for Initialization and Architecture Selection in Graph Neural
  Networks with ReLU Activations
Principles for Initialization and Architecture Selection in Graph Neural Networks with ReLU Activations
G. Dezoort
Boris Hanin
AI4CE
17
3
0
20 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
30
25
0
30 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
13
80
0
23 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
52
0
28 Apr 2023
Diffusion-based Generative AI for Exploring Transition States from 2D
  Molecular Graphs
Diffusion-based Generative AI for Exploring Transition States from 2D Molecular Graphs
Seonghwan Kim
Jeheon Woo
Woo Youn Kim
DiffM
25
25
0
20 Apr 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry
  via positional denoising
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
19
6
0
28 Mar 2023
Trainable Projected Gradient Method for Robust Fine-tuning
Trainable Projected Gradient Method for Robust Fine-tuning
Junjiao Tian
Xiaoliang Dai
Chih-Yao Ma
Zecheng He
Yen-Cheng Liu
Z. Kira
43
30
0
19 Mar 2023
Wigner kernels: body-ordered equivariant machine learning without a
  basis
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
19
15
0
07 Mar 2023
DR-Label: Improving GNN Models for Catalysis Systems by Label
  Deconstruction and Reconstruction
DR-Label: Improving GNN Models for Catalysis Systems by Label Deconstruction and Reconstruction
Bo-Lan Wang
Chen Liang
Jiaze Wang
Furui Liu
Shaogang Hao
Dong Li
Jianye Hao
Guangyong Chen
Xiaolong Zou
Pheng-Ann Heng
34
3
0
06 Mar 2023
SupSiam: Non-contrastive Auxiliary Loss for Learning from Molecular
  Conformers
SupSiam: Non-contrastive Auxiliary Loss for Learning from Molecular Conformers
Michael R. Maser
Ji Won Park
J. Lin
Jae Hyeon Lee
Nathan C. Frey
Andrew Watkins
8
5
0
15 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property
  Prediction
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
28
8
0
06 Feb 2023
Latent Graph Inference using Product Manifolds
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio'
BDL
19
18
0
26 Nov 2022
Curvature-informed multi-task learning for graph networks
Curvature-informed multi-task learning for graph networks
Alexander New
M. Pekala
Nam Q. Le
Janna Domenico
C. Piatko
Christopher D. Stiles
17
4
0
02 Aug 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
57
0
29 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
75
211
0
23 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
13
170
0
17 Jun 2022
The CLRS Algorithmic Reasoning Benchmark
The CLRS Algorithmic Reasoning Benchmark
Petar Velivcković
Adria Puigdomenech Badia
David Budden
Razvan Pascanu
Andrea Banino
Mikhail Dashevskiy
R. Hadsell
Charles Blundell
157
87
0
31 May 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
17
27
0
18 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
26
65
0
09 Mar 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,229
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
218
498
0
20 Oct 2020
Robust Optimization as Data Augmentation for Large-scale Graphs
Robust Optimization as Data Augmentation for Large-scale Graphs
Kezhi Kong
G. Li
Mucong Ding
Zuxuan Wu
Chen Zhu
Bernard Ghanem
Gavin Taylor
Tom Goldstein
87
74
0
19 Oct 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
1