Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07998
Cited By
Revisiting the Calibration of Modern Neural Networks
15 June 2021
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting the Calibration of Modern Neural Networks"
19 / 69 papers shown
Title
Language Models (Mostly) Know What They Know
Saurav Kadavath
Tom Conerly
Amanda Askell
T. Henighan
Dawn Drain
...
Nicholas Joseph
Benjamin Mann
Sam McCandlish
C. Olah
Jared Kaplan
ELM
44
712
0
11 Jul 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David A. Clifton
N. Robertson
15
6
0
30 Jun 2022
Forecasting Future World Events with Neural Networks
Andy Zou
Tristan Xiao
Ryan Jia
Joe Kwon
Mantas Mazeika
Richard Li
Dawn Song
Jacob Steinhardt
Owain Evans
Dan Hendrycks
22
22
0
30 Jun 2022
COLD Fusion: Calibrated and Ordinal Latent Distribution Fusion for Uncertainty-Aware Multimodal Emotion Recognition
M. Tellamekala
Shahin Amiriparian
Björn W. Schuller
Elisabeth André
T. Giesbrecht
M. Valstar
23
25
0
12 Jun 2022
Re-Examining Calibration: The Case of Question Answering
Chenglei Si
Chen Zhao
Sewon Min
Jordan L. Boyd-Graber
59
30
0
25 May 2022
Calibration of Natural Language Understanding Models with Venn--ABERS Predictors
Patrizio Giovannotti
38
6
0
21 May 2022
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
28
13
0
20 May 2022
Evaluating Uncertainty Calibration for Open-Set Recognition
Zongyao Lyu
Nolan B. Gutierrez
William J. Beksi
UQCV
27
1
0
15 May 2022
Distinction Maximization Loss: Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation by Replacing the Loss and Calibrating
David Macêdo
Cleber Zanchettin
Teresa B Ludermir
UQCV
25
4
0
12 May 2022
Calibrating for Class Weights by Modeling Machine Learning
Andrew Caplin
Daniel Martin
Philip Marx
19
1
0
10 May 2022
It's DONE: Direct ONE-shot learning with quantile weight imprinting
Kazufumi Hosoda
Keigo Nishida
S. Seno
Tomohiro Mashita
H. Kashioka
I. Ohzawa
17
2
0
28 Apr 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
17
42
0
25 Mar 2022
How Do Vision Transformers Work?
Namuk Park
Songkuk Kim
ViT
30
465
0
14 Feb 2022
On the Value of ML Models
Fabio Casati
Pierre-Andre Noel
Jie Yang
11
7
0
13 Dec 2021
Deep Probability Estimation
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
...
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
28
14
0
21 Nov 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
37
21
0
17 Jun 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
271
2,603
0
04 May 2021
MetNet: A Neural Weather Model for Precipitation Forecasting
C. Sønderby
L. Espeholt
Jonathan Heek
Mostafa Dehghani
Avital Oliver
Tim Salimans
Shreya Agrawal
Jason Hickey
Nal Kalchbrenner
AI4Cl
219
273
0
24 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Previous
1
2