Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09481
Cited By
Stochastic Bias-Reduced Gradient Methods
17 June 2021
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Bias-Reduced Gradient Methods"
20 / 20 papers shown
Title
Unbiased least squares regression via averaged stochastic gradient descent
Nabil Kahalé
18
0
0
26 Jun 2024
Closing the Computational-Query Depth Gap in Parallel Stochastic Convex Optimization
A. Jambulapati
Aaron Sidford
Kevin Tian
50
1
0
11 Jun 2024
Quantum Algorithms and Lower Bounds for Finite-Sum Optimization
Yexin Zhang
Chenyi Zhang
Cong Fang
Liwei Wang
Tongyang Li
37
2
0
05 Jun 2024
Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions
Hilal Asi
Daogao Liu
Kevin Tian
40
3
0
04 Jun 2024
When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?
Guanyang Wang
Jose Blanchet
Peter Glynn
20
1
0
01 Apr 2024
Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems
Tomás González
Cristóbal Guzmán
Courtney Paquette
34
3
0
05 Mar 2024
Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity
Ahmet Alacaoglu
Donghwan Kim
Stephen J. Wright
27
3
0
07 Feb 2024
Dynamic Byzantine-Robust Learning: Adapting to Switching Byzantine Workers
Ron Dorfman
Naseem Yehya
Kfir Y. Levy
22
2
0
05 Feb 2024
Optimal Multi-Distribution Learning
Zihan Zhang
Wenhao Zhan
Yuxin Chen
Simon S. Du
Jason D. Lee
31
12
0
08 Dec 2023
A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and Minimizing the Maximum of Smooth Functions
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
21
4
0
17 Nov 2023
Contextual Stochastic Bilevel Optimization
Yifan Hu
Jie Wang
Yao Xie
Andreas Krause
Daniel Kuhn
34
11
0
27 Oct 2023
ReSQueing Parallel and Private Stochastic Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Y. Lee
Daogao Liu
Aaron Sidford
Kevin Tian
FedML
22
12
0
01 Jan 2023
Interpreting Bias in the Neural Networks: A Peek Into Representational Similarity
Gnyanesh Bangaru
Lalith Bharadwaj Baru
Kiran Chakravarthula
17
0
0
14 Nov 2022
Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization
Le‐Yu Chen
Luo Luo
34
7
0
11 Aug 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
50
11
0
17 Jun 2022
Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization
Liang Zhang
K. K. Thekumparampil
Sewoong Oh
Niao He
36
17
0
01 Jun 2022
Distributionally Robust Optimization via Ball Oracle Acceleration
Y. Carmon
Danielle Hausler
18
11
0
24 Mar 2022
Adapting to Mixing Time in Stochastic Optimization with Markovian Data
Ron Dorfman
Kfir Y. Levy
37
28
0
09 Feb 2022
Unbiased Optimal Stopping via the MUSE
Zhengqing Zhou
Guanyang Wang
Jose H. Blanchet
Peter Glynn
19
6
0
04 Jun 2021
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
David Martínez-Rubio
32
19
0
07 Dec 2020
1