ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09992
  4. Cited By
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis

18 June 2021
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
    AAML
ArXivPDFHTML

Papers citing "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis"

37 / 37 papers shown
Title
Learning-Augmented Robust Algorithmic Recourse
Learning-Augmented Robust Algorithmic Recourse
Kshitij Kayastha
Vasilis Gkatzelis
Shahin Jabbari
34
0
0
02 Oct 2024
CF-OPT: Counterfactual Explanations for Structured Prediction
CF-OPT: Counterfactual Explanations for Structured Prediction
Germain Vivier--Ardisson
Alexandre Forel
Axel Parmentier
Thibaut Vidal
OffRL
CML
BDL
35
1
0
28 May 2024
Model-Based Counterfactual Explanations Incorporating Feature Space
  Attributes for Tabular Data
Model-Based Counterfactual Explanations Incorporating Feature Space Attributes for Tabular Data
Yuta Sumiya
Hayaru Shouno
AAML
OOD
30
0
0
20 Apr 2024
Utilizing Adversarial Examples for Bias Mitigation and Accuracy
  Enhancement
Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement
Pushkar Shukla
Dhruv Srikanth
Lee Cohen
Matthew A. Turk
AAML
38
0
0
18 Apr 2024
Do Counterfactual Examples Complicate Adversarial Training?
Do Counterfactual Examples Complicate Adversarial Training?
Eric C. Yeats
Cameron Darwin
Eduardo Ortega
Frank Liu
Hai Li
DiffM
37
0
0
16 Apr 2024
Towards Non-Adversarial Algorithmic Recourse
Towards Non-Adversarial Algorithmic Recourse
Tobias Leemann
Martin Pawelczyk
Bardh Prenkaj
Gjergji Kasneci
AAML
28
1
0
15 Mar 2024
Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation
Cost-Adaptive Recourse Recommendation by Adaptive Preference Elicitation
Duy Nguyen
Bao Nguyen
Viet Anh Nguyen
18
0
0
23 Feb 2024
Robust Counterfactual Explanations in Machine Learning: A Survey
Robust Counterfactual Explanations in Machine Learning: A Survey
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
OffRL
CML
28
10
0
02 Feb 2024
ABIGX: A Unified Framework for eXplainable Fault Detection and
  Classification
ABIGX: A Unified Framework for eXplainable Fault Detection and Classification
Yue Zhuo
Jinchuan Qian
Zhihuan Song
Zhiqiang Ge
14
1
0
09 Nov 2023
Faithful and Robust Local Interpretability for Textual Predictions
Faithful and Robust Local Interpretability for Textual Predictions
Gianluigi Lopardo
F. Precioso
Damien Garreau
OOD
26
4
0
30 Oct 2023
Adversarial Machine Learning for Social Good: Reframing the Adversary as
  an Ally
Adversarial Machine Learning for Social Good: Reframing the Adversary as an Ally
Shawqi Al-Maliki
Adnan Qayyum
Hassan Ali
M. Abdallah
Junaid Qadir
D. Hoang
Dusit Niyato
Ala I. Al-Fuqaha
AAML
26
3
0
05 Oct 2023
On the Trade-offs between Adversarial Robustness and Actionable
  Explanations
On the Trade-offs between Adversarial Robustness and Actionable Explanations
Satyapriya Krishna
Chirag Agarwal
Himabindu Lakkaraju
AAML
36
0
0
28 Sep 2023
T-COL: Generating Counterfactual Explanations for General User
  Preferences on Variable Machine Learning Systems
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
Yiming Li
Daling Wang
Wenfang Wu
Shi Feng
Yifei Zhang
CML
40
1
0
28 Sep 2023
Adaptive Adversarial Training Does Not Increase Recourse Costs
Adaptive Adversarial Training Does Not Increase Recourse Costs
Ian Hardy
Jayanth Yetukuri
Yang Liu
AAML
11
1
0
05 Sep 2023
Towards User Guided Actionable Recourse
Towards User Guided Actionable Recourse
Jayanth Yetukuri
Ian Hardy
Yang Liu
13
2
0
05 Sep 2023
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
Anna P. Meyer
Dan Ley
Suraj Srinivas
Himabindu Lakkaraju
FAtt
34
6
0
11 Jun 2023
The Risks of Recourse in Binary Classification
The Risks of Recourse in Binary Classification
H. Fokkema
Damien Garreau
T. Erven
FaML
16
4
0
01 Jun 2023
Unveiling the Potential of Counterfactuals Explanations in Employability
Unveiling the Potential of Counterfactuals Explanations in Employability
Raphael Mazzine Barbosa de Oliveira
S. Goethals
Dieter Brughmans
David Martens
19
2
0
17 May 2023
Algorithmic Recourse with Missing Values
Algorithmic Recourse with Missing Values
Kentaro Kanamori
Takuya Takagi
Ken Kobayashi
Yuichi Ike
28
2
0
28 Apr 2023
Adversarial Counterfactual Visual Explanations
Adversarial Counterfactual Visual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
41
27
0
17 Mar 2023
Towards Bridging the Gaps between the Right to Explanation and the Right
  to be Forgotten
Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten
Satyapriya Krishna
Jiaqi Ma
Himabindu Lakkaraju
24
13
0
08 Feb 2023
Robustness Implies Fairness in Causal Algorithmic Recourse
Robustness Implies Fairness in Causal Algorithmic Recourse
A. Ehyaei
Amir-Hossein Karimi
Bernhard Schölkopf
S. Maghsudi
FaML
28
12
0
07 Feb 2023
On the Privacy Risks of Algorithmic Recourse
On the Privacy Risks of Algorithmic Recourse
Martin Pawelczyk
Himabindu Lakkaraju
Seth Neel
19
31
0
10 Nov 2022
Decomposing Counterfactual Explanations for Consequential Decision
  Making
Decomposing Counterfactual Explanations for Consequential Decision Making
Martin Pawelczyk
Lea Tiyavorabun
Gjergji Kasneci
CML
14
1
0
03 Nov 2022
A.I. Robustness: a Human-Centered Perspective on Technological
  Challenges and Opportunities
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
19
10
0
17 Oct 2022
Formalising the Robustness of Counterfactual Explanations for Neural
  Networks
Formalising the Robustness of Counterfactual Explanations for Neural Networks
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
AAML
15
26
0
31 Aug 2022
On the Trade-Off between Actionable Explanations and the Right to be
  Forgotten
On the Trade-Off between Actionable Explanations and the Right to be Forgotten
Martin Pawelczyk
Tobias Leemann
Asia J. Biega
Gjergji Kasneci
FaML
MU
24
23
0
30 Aug 2022
The Manifold Hypothesis for Gradient-Based Explanations
The Manifold Hypothesis for Gradient-Based Explanations
Sebastian Bordt
Uddeshya Upadhyay
Zeynep Akata
U. V. Luxburg
FAtt
AAML
18
12
0
15 Jun 2022
Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles
Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles
Alexandre Forel
Axel Parmentier
Thibaut Vidal
22
1
0
27 May 2022
Diffusion Models for Counterfactual Explanations
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
32
55
0
29 Mar 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
46
63
0
21 Dec 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
Adversarial Attacks for Tabular Data: Application to Fraud Detection and
  Imbalanced Data
Adversarial Attacks for Tabular Data: Application to Fraud Detection and Imbalanced Data
F. Cartella
Orlando Anunciação
Yuki Funabiki
D. Yamaguchi
Toru Akishita
Olivier Elshocht
AAML
61
71
0
20 Jan 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1