ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14474
  4. Cited By
False Negative Reduction in Video Instance Segmentation using
  Uncertainty Estimates

False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates

28 June 2021
Kira Maag
    UQCV
ArXivPDFHTML

Papers citing "False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates"

6 / 6 papers shown
Title
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
41
0
0
17 Sep 2024
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
  applied to Out-of-Distribution Segmentation
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
32
7
0
13 Mar 2023
Plausibility Verification For 3D Object Detectors Using Energy-Based
  Optimization
Plausibility Verification For 3D Object Detectors Using Energy-Based Optimization
A.K. Vivekanandan
Niels Maier
Johann Marius Zöllner
AAML
3DPC
33
3
0
02 Nov 2022
Two Video Data Sets for Tracking and Retrieval of Out of Distribution
  Objects
Two Video Data Sets for Tracking and Retrieval of Out of Distribution Objects
Kira Maag
Robin Shing Moon Chan
Svenja Uhlemeyer
K. Kowol
Hanno Gottschalk
32
19
0
05 Oct 2022
False Negative Reduction in Semantic Segmentation under Domain Shift
  using Depth Estimation
False Negative Reduction in Semantic Segmentation under Domain Shift using Depth Estimation
Kira Maag
Matthias Rottmann
23
3
0
07 Jul 2022
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1