Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.01562
Cited By
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
4 July 2021
Boris Hanin
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Random Neural Networks in the Infinite Width Limit as Gaussian Processes"
26 / 26 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
71
0
0
06 May 2025
Fractal and Regular Geometry of Deep Neural Networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
MDE
AI4CE
29
0
0
08 Apr 2025
Deep Neural Nets as Hamiltonians
Mike Winer
Boris Hanin
73
0
0
31 Mar 2025
Neural Tangent Kernel of Neural Networks with Loss Informed by Differential Operators
Weiye Gan
Yicheng Li
Q. Lin
Zuoqiang Shi
34
0
0
14 Mar 2025
Effective Non-Random Extreme Learning Machine
Daniela De Canditiis
Fabiano Veglianti
66
0
0
25 Nov 2024
Proportional infinite-width infinite-depth limit for deep linear neural networks
Federico Bassetti
Lucia Ladelli
P. Rotondo
62
1
0
22 Nov 2024
On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
Guhan Chen
Yicheng Li
Qian Lin
AAML
30
1
0
08 Oct 2024
Finite Neural Networks as Mixtures of Gaussian Processes: From Provable Error Bounds to Prior Selection
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
BDL
25
1
0
26 Jul 2024
Wide stable neural networks: Sample regularity, functional convergence and Bayesian inverse problems
Tomás Soto
22
0
0
04 Jul 2024
Large Deviations of Gaussian Neural Networks with ReLU activation
Quirin Vogel
19
1
0
27 May 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
60
1
0
27 May 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
63
1
0
16 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
BDL
66
1
0
15 May 2024
Neural reproducing kernel Banach spaces and representer theorems for deep networks
Francesca Bartolucci
E. De Vito
Lorenzo Rosasco
S. Vigogna
27
4
0
13 Mar 2024
Wide Deep Neural Networks with Gaussian Weights are Very Close to Gaussian Processes
Dario Trevisan
UQCV
BDL
17
7
0
18 Dec 2023
Understanding Activation Patterns in Artificial Neural Networks by Exploring Stochastic Processes
S. Lehmler
Muhammad Saif-ur-Rehman
Tobias Glasmachers
Ioannis Iossifidis
9
0
0
01 Aug 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
23
11
0
12 Jul 2023
A Quantitative Functional Central Limit Theorem for Shallow Neural Networks
Valentina Cammarota
Domenico Marinucci
M. Salvi
S. Vigogna
10
7
0
29 Jun 2023
Gaussian random field approximation via Stein's method with applications to wide random neural networks
Krishnakumar Balasubramanian
L. Goldstein
Nathan Ross
Adil Salim
12
8
0
28 Jun 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
47
7
0
03 May 2023
Convergence of neural networks to Gaussian mixture distribution
Yasuhiko Asao
Ryotaro Sakamoto
S. Takagi
BDL
14
2
0
26 Apr 2022
Quantitative Gaussian Approximation of Randomly Initialized Deep Neural Networks
Andrea Basteri
Dario Trevisan
BDL
6
21
0
14 Mar 2022
Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications
Darshil Doshi
Tianyu He
Andrey Gromov
20
8
0
23 Nov 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
C. Pehlevan
BDL
UQCV
MDE
26
8
0
23 Nov 2021
Rate of Convergence of Polynomial Networks to Gaussian Processes
Adam Klukowski
8
14
0
04 Nov 2021
Non-asymptotic approximations of neural networks by Gaussian processes
Ronen Eldan
Dan Mikulincer
T. Schramm
28
24
0
17 Feb 2021
1