ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04517
  4. Cited By
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
  Detectors

Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors

9 July 2021
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
Hanno Gottschalk
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors"

13 / 13 papers shown
Title
Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
Julia Hornauer
Amir El-Ghoussani
Vasileios Belagiannis
UQCV
55
0
0
09 Feb 2025
DrIFT: Autonomous Drone Dataset with Integrated Real and Synthetic Data,
  Flexible Views, and Transformed Domains
DrIFT: Autonomous Drone Dataset with Integrated Real and Synthetic Data, Flexible Views, and Transformed Domains
Fardad Dadboud
Hamid Azad
Varun Mehta
M. Bolic
Iraj Mntegh
67
0
0
06 Dec 2024
Uncertainty and Prediction Quality Estimation for Semantic Segmentation
  via Graph Neural Networks
Uncertainty and Prediction Quality Estimation for Semantic Segmentation via Graph Neural Networks
Edgar Heinert
Stephan Tilgner
Timo Palm
Matthias Rottmann
UQCV
36
0
0
17 Sep 2024
GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples
  using Gradients and Invariance Transformations
GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples using Gradients and Invariance Transformations
Julia Lust
A. P. Condurache
AAML
UQCV
8
0
0
05 Jul 2023
LMD: Light-weight Prediction Quality Estimation for Object Detection in
  Lidar Point Clouds
LMD: Light-weight Prediction Quality Estimation for Object Detection in Lidar Point Clouds
Tobias Riedlinger
Marius Schubert
Sarina Penquitt
Jan-Marcel Kezmann
Pascal Colling
Karsten Kahl
L. Roese-Koerner
Michael Arnold
Urs Zimmermann
Matthias Rottmann
3DPC
27
1
0
13 Jun 2023
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
  applied to Out-of-Distribution Segmentation
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
32
7
0
13 Mar 2023
Normalizing Flow based Feature Synthesis for Outlier-Aware Object
  Detection
Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection
Nishant Kumar
Sinisa Segvic
Abouzar Eslami
Stefan Gumhold
41
13
0
01 Feb 2023
Uncertainty Quantification and Resource-Demanding Computer Vision
  Applications of Deep Learning
Uncertainty Quantification and Resource-Demanding Computer Vision Applications of Deep Learning
Julian Burghoff
Robin Shing Moon Chan
Hanno Gottschalk
Annika Muetze
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
BDL
21
0
0
30 May 2022
Dense Out-of-Distribution Detection by Robust Learning on Synthetic
  Negative Data
Dense Out-of-Distribution Detection by Robust Learning on Synthetic Negative Data
Matej Grcić
Petra Bevandić
Zoran Kalafatić
Sinivsa vSegvić
21
10
0
23 Dec 2021
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
189
328
0
01 Oct 2021
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image
  Classification
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification
Matias Valdenegro-Toro
UQCV
56
51
0
17 Oct 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1