ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04009
  4. Cited By
Transductive Few-Shot Classification on the Oblique Manifold

Transductive Few-Shot Classification on the Oblique Manifold

9 August 2021
Guodong Qi
Huimin Yu
Zhaohui Lu
Shuzhao Li
ArXivPDFHTML

Papers citing "Transductive Few-Shot Classification on the Oblique Manifold"

9 / 9 papers shown
Title
A Survey on Open-Set Image Recognition
A Survey on Open-Set Image Recognition
Jiaying Sun
Qiulei Dong
BDL
ObjD
32
3
0
25 Dec 2023
Adaptive manifold for imbalanced transductive few-shot learning
Adaptive manifold for imbalanced transductive few-shot learning
Michalis Lazarou
Yannis Avrithis
Tania Stathaki
18
6
0
27 Apr 2023
Exploring Data Geometry for Continual Learning
Exploring Data Geometry for Continual Learning
Zhi Gao
C. Xu
Feng Li
Yunde Jia
Mehrtash Harandi
Yuwei Wu
CLL
21
9
0
08 Apr 2023
Towards Practical Few-Shot Query Sets: Transductive Minimum Description
  Length Inference
Towards Practical Few-Shot Query Sets: Transductive Minimum Description Length Inference
Ségolène Martin
Malik Boudiaf
Émilie Chouzenoux
J. Pesquet
Ismail Ben Ayed
22
8
0
26 Oct 2022
Design of the topology for contrastive visual-textual alignment
Design of the topology for contrastive visual-textual alignment
Zhun Sun
25
1
0
05 Sep 2022
Rethinking Generalization in Few-Shot Classification
Rethinking Generalization in Few-Shot Classification
Markus Hiller
Rongkai Ma
Mehrtash Harandi
Tom Drummond
OCL
VLM
17
55
0
15 Jun 2022
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art
  Few-Shot Classification with Simple Ingredients
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
Yassir Bendou
Yuqing Hu
Raphael Lafargue
G. Lioi
Bastien Pasdeloup
S. Pateux
Vincent Gripon
VLM
28
37
0
24 Jan 2022
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1