ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.05615
  4. Cited By
DnD: Dense Depth Estimation in Crowded Dynamic Indoor Scenes

DnD: Dense Depth Estimation in Crowded Dynamic Indoor Scenes

12 August 2021
Dongki Jung
Jaehoon Choi
Yonghan Lee
Deok-Won Kim
Changick Kim
Dinesh Manocha
Donghwan Lee
    3DV
    MDE
ArXivPDFHTML

Papers citing "DnD: Dense Depth Estimation in Crowded Dynamic Indoor Scenes"

3 / 3 papers shown
Title
SelfTune: Metrically Scaled Monocular Depth Estimation through
  Self-Supervised Learning
SelfTune: Metrically Scaled Monocular Depth Estimation through Self-Supervised Learning
Jaehoon Choi
Dongki Jung
Yonghan Lee
Deok-Won Kim
Dinesh Manocha
Donghwan Lee
MDE
SSL
21
5
0
10 Mar 2022
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
194
1,708
0
06 Jun 2018
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Iro Armeni
S. Sax
Amir Zamir
Silvio Savarese
3DV
3DPC
115
876
0
03 Feb 2017
1