Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01050
Cited By
Characterizing possible failure modes in physics-informed neural networks
2 September 2021
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing possible failure modes in physics-informed neural networks"
40 / 90 papers shown
Title
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
12
0
0
21 Nov 2022
A Deep Double Ritz Method (D
2
^2
2
RM) for solving Partial Differential Equations using Neural Networks
C. Uriarte
David Pardo
I. Muga
J. Muñoz‐Matute
22
17
0
07 Nov 2022
Neuro-symbolic partial differential equation solver
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
S. Choudhry
Frédéric Gibou
21
1
0
25 Oct 2022
JAX-DIPS: Neural bootstrapping of finite discretization methods and application to elliptic problems with discontinuities
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
Frédéric Gibou
13
8
0
25 Oct 2022
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
Pu Ren
Chengping Rao
Su Chen
Jian-Xun Wang
Hao-Lun Sun
Yang Liu
21
40
0
25 Oct 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
12
4
0
14 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
8
17
0
06 Oct 2022
Homotopy-based training of NeuralODEs for accurate dynamics discovery
Joon-Hyuk Ko
Hankyul Koh
Nojun Park
W. Jhe
30
8
0
04 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
16
76
0
01 Oct 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
21
6
0
07 Sep 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
19
22
0
26 Jul 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
M. Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
16
351
0
21 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
16
28
0
18 Jul 2022
Earthformer: Exploring Space-Time Transformers for Earth System Forecasting
Zhihan Gao
Xingjian Shi
Hao Wang
Yi Zhu
Yuyang Wang
Mu Li
Dit-Yan Yeung
AI4TS
31
145
0
12 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
11
5
0
03 Jul 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
19
6
0
29 Jun 2022
Is
L
2
L^2
L
2
Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
Chuwei Wang
Shanda Li
Di He
Liwei Wang
AI4CE
PINN
11
28
0
04 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
19
13
0
29 May 2022
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
Sen Na
Michael W. Mahoney
13
7
0
27 May 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
35
140
0
26 May 2022
Loss Landscape Engineering via Data Regulation on PINNs
Vignesh Gopakumar
Stanislas Pamela
D. Samaddar
PINN
30
16
0
16 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
16
14
0
06 May 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
P. Hassanzadeh
PINN
21
45
0
05 May 2022
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
8
25
0
27 Apr 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
22
23
0
11 Apr 2022
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
31
17
0
25 Mar 2022
Investigating Compounding Prediction Errors in Learned Dynamics Models
Nathan Lambert
K. Pister
Roberto Calandra
AI4CE
14
27
0
17 Mar 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Z. Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
12
14
0
24 Feb 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
18
32
0
17 Feb 2022
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
6
58
0
01 Feb 2022
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
32
17
0
24 Jan 2022
Learning finite difference methods for reaction-diffusion type equations with FCNN
Yongho Kim
Yongho Choi
11
8
0
04 Jan 2022
Fast PDE-constrained optimization via self-supervised operator learning
Sifan Wang
Mohamed Aziz Bhouri
P. Perdikaris
40
28
0
25 Oct 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
22
19
0
04 Oct 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
18
62
0
02 Jul 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
13
39
0
03 May 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Previous
1
2