Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.06716
Cited By
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
14 September 2021
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO"
50 / 70 papers shown
Title
FigBO: A Generalized Acquisition Function Framework with Look-Ahead Capability for Bayesian Optimization
Hui Chen
Xuhui Fan
Zhangkai Wu
Longbing Cao
LLMAG
33
0
0
28 Apr 2025
A Balanced Approach of Rapid Genetic Exploration and Surrogate Exploitation for Hyperparameter Optimization
Chul Kim
Inwhee Joe
16
2
0
10 Apr 2025
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Z. Liu
Yoshua Bengio
Can Chen
OffRL
51
2
0
21 Mar 2025
Hyperparameter Importance Analysis for Multi-Objective AutoML
Daphne Theodorakopoulos
Frederic Stahl
Marius Lindauer
54
2
0
03 Jan 2025
Large Language Models for Constructing and Optimizing Machine Learning Workflows: A Survey
Yang Gu
Hengyu You
Jian Cao
Muran Yu
Haoran Fan
Shiyou Qian
LM&MA
AI4CE
33
3
0
11 Nov 2024
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Zeyuan Ma
Hongshu Guo
Yue-jiao Gong
Jun Zhang
Kay Chen Tan
92
2
0
01 Nov 2024
Efficient Deep Learning Board: Training Feedback Is Not All You Need
Lina Gong
Qi Gao
Peng Li
Mingqiang Wei
Fei Wu
OOD
16
0
0
17 Oct 2024
A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes
Jake Robertson
Thorsten Schmidt
Frank Hutter
Noor H. Awad
20
0
0
17 Oct 2024
LMEMs for post-hoc analysis of HPO Benchmarking
Anton Geburek
Neeratyoy Mallik
Danny Stoll
Xavier Bouthillier
Frank Hutter
11
0
0
05 Aug 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
31
0
0
24 Jun 2024
Reshuffling Resampling Splits Can Improve Generalization of Hyperparameter Optimization
Thomas Nagler
Lennart Schneider
B. Bischl
Matthias Feurer
30
2
0
24 May 2024
Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining
Wenyu Wang
Zheyi Fan
S. Ng
11
0
0
24 May 2024
Position: Leverage Foundational Models for Black-Box Optimization
Xingyou Song
Yingtao Tian
Robert Tjarko Lange
Chansoo Lee
Yujin Tang
Yutian Chen
25
3
0
06 May 2024
Position: Why We Must Rethink Empirical Research in Machine Learning
Moritz Herrmann
F. J. D. Lange
Katharina Eggensperger
Giuseppe Casalicchio
Marcel Wever
Matthias Feurer
David Rügamer
Eyke Hüllermeier
A. Boulesteix
Bernd Bischl
28
0
0
03 May 2024
The Unreasonable Effectiveness Of Early Discarding After One Epoch In Neural Network Hyperparameter Optimization
Romain Egele
Felix Mohr
Tom Viering
Prasanna Balaprakash
21
5
0
05 Apr 2024
Fast Benchmarking of Asynchronous Multi-Fidelity Optimization on Zero-Cost Benchmarks
Shuhei Watanabe
Neeratyoy Mallik
Eddie Bergman
Frank Hutter
12
0
0
04 Mar 2024
Multi-Fidelity Methods for Optimization: A Survey
Ke Li
Fan Li
AI4CE
17
6
0
15 Feb 2024
Strong convexity-guided hyper-parameter optimization for flatter losses
Rahul Yedida
Snehanshu Saha
8
0
0
07 Feb 2024
Large Language Models to Enhance Bayesian Optimization
Tennison Liu
Nicolás Astorga
Nabeel Seedat
M. Schaar
50
44
0
06 Feb 2024
Poisson Process for Bayesian Optimization
Xiaoxing Wang
Jiaxing Li
Chao Xue
Wei Liu
Weifeng Liu
Xiaokang Yang
Junchi Yan
Dacheng Tao
20
1
0
05 Feb 2024
Large Language Model Agent for Hyper-Parameter Optimization
Siyi Liu
Chen Gao
Yong Li
23
18
0
02 Feb 2024
Long-run Behaviour of Multi-fidelity Bayesian Optimisation
G. Dovonon
Jakob Zeitler
11
1
0
19 Dec 2023
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
21
49
0
07 Dec 2023
Scalable Meta-Learning with Gaussian Processes
Petru Tighineanu
Lukas Großberger
P. Baireuther
Kathrin Skubch
Stefan Falkner
Julia Vinogradska
Felix Berkenkamp
12
4
0
01 Dec 2023
A systematic study comparing hyperparameter optimization engines on tabular data
Balazs Kegl
6
0
0
27 Nov 2023
On the Hyperparameter Loss Landscapes of Machine Learning Models: An Exploratory Study
Mingyu Huang
Ke Li
10
3
0
23 Nov 2023
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
David Salinas
Nick Erickson
14
5
0
06 Nov 2023
Machine learning's own Industrial Revolution
Yuan Luo
Song Han
Jingjing Liu
AI4CE
8
0
0
04 Nov 2023
Datasets and Benchmarks for Nanophotonic Structure and Parametric Design Simulations
Jungtaek Kim
Mingxuan Li
Oliver Hinder
Paul W. Leu
11
1
0
29 Oct 2023
Deterministic Langevin Unconstrained Optimization with Normalizing Flows
James M. Sullivan
U. Seljak
19
0
0
01 Oct 2023
Parallel Multi-Objective Hyperparameter Optimization with Uniform Normalization and Bounded Objectives
Romain Egele
Tyler Chang
Yixuan Sun
V. Vishwanath
Prasanna Balaprakash
23
2
0
26 Sep 2023
HomOpt: A Homotopy-Based Hyperparameter Optimization Method
Sophia J. Abraham
K. D. G. Maduranga
Jeffery Kinnison
Zachariah Carmichael
Jonathan D. Hauenstein
Walter J. Scheirer
13
0
0
07 Aug 2023
Is One Epoch All You Need For Multi-Fidelity Hyperparameter Optimization?
Romain Egele
Isabelle M Guyon
Yixuan Sun
Prasanna Balaprakash
14
2
0
28 Jul 2023
SigOpt Mulch: An Intelligent System for AutoML of Gradient Boosted Trees
Aleksei G. Sorokin
Xinran Zhu
E. Lee
Bolong Cheng
15
2
0
10 Jul 2023
MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
Jia-Yu Pan
Stefan Falkner
Felix Berkenkamp
Joaquin Vanschoren
11
1
0
07 Jul 2023
Framework and Benchmarks for Combinatorial and Mixed-variable Bayesian Optimization
Kamil Dreczkowski
Antoine Grosnit
Haitham Bou-Ammar
11
4
0
16 Jun 2023
Multi-Fidelity Multi-Armed Bandits Revisited
Xuchuang Wang
Qingyun Wu
Wei-Neng Chen
John C. S. Lui
18
2
0
13 Jun 2023
Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
Huong Ha
Vu-Linh Nguyen
Hung Tran-The
Hongyu Zhang
Xiuzhen Zhang
A. Hengel
22
1
0
12 Jun 2023
Self-Adjusting Weighted Expected Improvement for Bayesian Optimization
C. Benjamins
E. Raponi
Anja Jankovic
Carola Doerr
Marius Lindauer
TPM
6
3
0
07 Jun 2023
Hyperparameters in Reinforcement Learning and How To Tune Them
Theresa Eimer
Marius Lindauer
Roberta Raileanu
OffRL
14
33
0
02 Jun 2023
Python Wrapper for Simulating Multi-Fidelity Optimization on HPO Benchmarks without Any Wait
Shuhei Watanabe
20
1
0
27 May 2023
PFNs4BO: In-Context Learning for Bayesian Optimization
Samuel G. Müller
Matthias Feurer
Noah Hollmann
Frank Hutter
15
33
0
27 May 2023
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
A. Maraval
Matthieu Zimmer
Antoine Grosnit
H. Ammar
BDL
14
15
0
25 May 2023
MO-DEHB: Evolutionary-based Hyperband for Multi-Objective Optimization
Noor H. Awad
Ayush Sharma
Philipp Muller
Janek Thomas
Frank Hutter
15
1
0
08 May 2023
Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance
Shuhei Watanabe
6
114
0
21 Apr 2023
Towards a Benchmarking Suite for Kernel Tuners
Jacob O. Tørring
Ben van Werkhoven
Filip Petrovic
Floris-Jan Willemsen
Jiri Filipovic
A. Elster
9
3
0
15 Mar 2023
A Coreset Learning Reality Check
Fred Lu
Edward Raff
James Holt
12
5
0
15 Jan 2023
HyperBO+: Pre-training a universal prior for Bayesian optimization with hierarchical Gaussian processes
Z. Fan
Xinran Han
Z. Wang
11
3
0
20 Dec 2022
Speeding Up Multi-Objective Hyperparameter Optimization by Task Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator
Shuhei Watanabe
Noor H. Awad
Masaki Onishi
Frank Hutter
21
6
0
13 Dec 2022
Neighbor Regularized Bayesian Optimization for Hyperparameter Optimization
Lei Cui
Yangguang Li
Xin Lu
Dong An
Fenggang Liu
BDL
10
0
0
07 Oct 2022
1
2
Next