ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11375
  4. Cited By
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains
  Viewpoint
v1v2v3v4 (latest)

Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint

23 September 2021
Paul Hagemann
J. Hertrich
Gabriele Steidl
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint"

25 / 25 papers shown
Title
A Mathematical Explanation of Transformers for Large Language Models and GPTs
A Mathematical Explanation of Transformers for Large Language Models and GPTs
X. Tai
Hao Liu
Lingfeng Li
Raymond H. F. Chan
AI4CE
102
1
0
05 Oct 2025
FLOWER: A Flow-Matching Solver for Inverse Problems
FLOWER: A Flow-Matching Solver for Inverse Problems
Mehrsa Pourya
Bassam El Rawas
M. Unser
56
1
0
30 Sep 2025
An invertible generative model for forward and inverse problems
An invertible generative model for forward and inverse problems
Tristan van Leeuwen
Christoph Brune
Marcello Carioni
GANTPM
204
0
0
04 Sep 2025
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Haoxuan Chen
Yinuo Ren
Martin Renqiang Min
Lexing Ying
Zachary Izzo
DiffMMedIm
305
11
0
04 Jun 2025
On the Relation between Rectified Flows and Optimal Transport
On the Relation between Rectified Flows and Optimal Transport
Johannes Hertrich
Antonin Chambolle
Julie Delon
OT
280
4
0
26 May 2025
Sampling from Boltzmann densities with physics informed low-rank formats
Sampling from Boltzmann densities with physics informed low-rank formatsScale Space and Variational Methods in Computer Vision (SSVM), 2024
Paul Hagemann
Janina Enrica Schutte
David Sommer
Martin Eigel
Gabriele Steidl
253
0
0
10 Dec 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
367
4
0
29 Jul 2024
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
303
2
0
18 Jun 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
377
22
0
27 Mar 2024
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Mixed Noise and Posterior Estimation with Conditional DeepGEM
Paul Hagemann
J. Hertrich
Maren Casfor
Sebastian Heidenreich
Gabriele Steidl
221
1
0
05 Feb 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
188
8
0
27 Dec 2023
Y-Diagonal Couplings: Approximating Posteriors with Conditional
  Wasserstein Distances
Y-Diagonal Couplings: Approximating Posteriors with Conditional Wasserstein Distances
Jannis Chemseddine
Paul Hagemann
Christian Wald
278
3
0
20 Oct 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance KernelInternational Conference on Learning Representations (ICLR), 2023
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
327
28
0
04 Oct 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measuresStatistics and computing (Stat. Comput.), 2023
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDLDRL
130
2
0
26 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
183
11
0
04 Aug 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging
  Inverse Problems
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse ProblemsSIAM Journal of Imaging Sciences (JSIS), 2023
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
180
6
0
17 Apr 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees
  for Bayesian Inverse Problems
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
229
10
0
28 Mar 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Manifold Learning by Mixture Models of VAEs for Inverse ProblemsJournal of machine learning research (JMLR), 2023
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
312
11
0
27 Mar 2023
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models
  for Image Generation
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation
Paul Hagemann
Sophie Mildenberger
Lars Ruthotto
Gabriele Steidl
Ni Yang
DiffM
370
32
0
08 Mar 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networksInternational Conference on Machine Learning (ICML), 2023
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
293
108
0
30 Jan 2023
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with
  Riesz Kernels
Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz KernelsInternational Conference on Machine Learning (ICML), 2023
Fabian Altekrüger
J. Hertrich
Gabriele Steidl
309
14
0
27 Jan 2023
Proximal Residual Flows for Bayesian Inverse Problems
Proximal Residual Flows for Bayesian Inverse ProblemsScale Space and Variational Methods in Computer Vision (SSVM), 2022
J. Hertrich
BDLTPM
204
4
0
30 Nov 2022
PatchNR: Learning from Very Few Images by Patch Normalizing Flow
  Regularization
PatchNR: Learning from Very Few Images by Patch Normalizing Flow RegularizationInverse Problems (IP), 2022
Fabian Altekrüger
Alexander Denker
Paul Hagemann
J. Hertrich
Peter Maass
Gabriele Steidl
MedIm
231
30
0
24 May 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for SuperresolutionSIAM Journal of Imaging Sciences (SIAM J. Imaging Sci.), 2022
Fabian Altekrüger
J. Hertrich
290
15
0
20 Jan 2022
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDLDiffMAI4CE
340
27
0
24 Nov 2021
1