Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.02096
Cited By
Top-N: Equivariant set and graph generation without exchangeability
5 October 2021
Clément Vignac
P. Frossard
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Top-N: Equivariant set and graph generation without exchangeability"
28 / 28 papers shown
Title
Improving Equivariant Networks with Probabilistic Symmetry Breaking
Hannah Lawrence
Vasco Portilheiro
Yan Zhang
Sékou-Oumar Kaba
32
3
0
27 Mar 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
92
2
0
21 Feb 2025
Score-based 3D molecule generation with neural fields
Matthieu Kirchmeyer
Pedro H. O. Pinheiro
Saeed Saremi
DiffM
35
0
0
15 Jan 2025
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
27
1
0
04 Oct 2024
Generative Modelling of Structurally Constrained Graphs
Manuel Madeira
Clément Vignac
D. Thanou
Pascal Frossard
DiffM
29
0
0
25 Jun 2024
Discrete-state Continuous-time Diffusion for Graph Generation
Zhe Xu
Ruizhong Qiu
Yuzhong Chen
Huiyuan Chen
Xiran Fan
Menghai Pan
Zhichen Zeng
Mahashweta Das
Hanghang Tong
14
0
0
19 May 2024
A Review on Fragment-based De Novo 2D Molecule Generation
Sergei Voloboev
VLM
19
0
0
08 May 2024
A Survey of Generative AI for de novo Drug Design: New Frontiers in Molecule and Protein Generation
Xiangru Tang
Howard Dai
Elizabeth Knight
Fang Wu
Yunyang Li
Tianxiao Li
Mark B. Gerstein
12
24
0
13 Feb 2024
Interpreting Equivariant Representations
Andreas Abildtrup Hansen
Anna Calissano
Aasa Feragen
27
1
0
23 Jan 2024
Symmetry Breaking and Equivariant Neural Networks
Sekouba Kaba
Siamak Ravanbakhsh
19
11
0
14 Dec 2023
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation
Qi Yan
Zhen-Long Liang
Yang Song
Renjie Liao
Lele Wang
DiffM
33
18
0
04 Jul 2023
Hyperbolic Graph Diffusion Model
Lingfeng Wen
Xuan Tang
Mingjie Ouyang
Xiangxiang Shen
Jian Yang
Daxin Zhu
Mingsong Chen
Xian Wei
21
1
0
13 Jun 2023
Trans-Dimensional Generative Modeling via Jump Diffusion Models
Andrew Campbell
William Harvey
Christian Weilbach
Valentin De Bortoli
Tom Rainforth
Arnaud Doucet
DiffM
21
2
0
25 May 2023
Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D
Bo Qiang
Yuxuan Song
Minkai Xu
Jingjing Gong
B. Gao
Hao Zhou
Weiying Ma
Yanyan Lan
DiffM
30
5
0
05 May 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
25
34
0
28 Apr 2023
Bridging the Gap between Chemical Reaction Pretraining and Conditional Molecule Generation with a Unified Model
Bo Qiang
Yiran Zhou
Yuheng Ding
Ningfeng Liu
Song Song
L. Zhang
Bowei Huang
Zhenming Liu
AI4CE
10
4
0
13 Mar 2023
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
DiffM
22
33
0
17 Feb 2023
Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation
Han Huang
Leilei Sun
Bowen Du
Weifeng Lv
17
24
0
01 Jan 2023
Diffusion Models for Graphs Benefit From Discrete State Spaces
K. Haefeli
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
DiffM
66
36
0
04 Oct 2022
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
33
20
0
12 Sep 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
10
49
0
04 Apr 2022
Equivariant Diffusion for Molecule Generation in 3D
Emiel Hoogeboom
Victor Garcia Satorras
Clément Vignac
Max Welling
DiffM
15
409
0
31 Mar 2022
A Survey on Deep Graph Generation: Methods and Applications
Yanqiao Zhu
Yuanqi Du
Yinkai Wang
Yichen Xu
Jieyu Zhang
Qiang Liu
Shu Wu
3DV
GNN
16
40
0
13 Mar 2022
ReGAE: Graph autoencoder based on recursive neural networks
Adam Malkowski
Jakub Grzechociñski
Pawel Wawrzyñski
GNN
6
0
0
28 Jan 2022
Generating stable molecules using imitation and reinforcement learning
S. A. Meldgaard
Jonas Köhler
H. L. Mortensen
Mads-Peter V. Christiansen
Frank Noé
B. Hammer
133
12
0
11 Jul 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
948
0
27 Apr 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
143
289
0
05 Nov 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
1