ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02096
  4. Cited By
Top-N: Equivariant set and graph generation without exchangeability

Top-N: Equivariant set and graph generation without exchangeability

5 October 2021
Clément Vignac
P. Frossard
    BDL
ArXivPDFHTML

Papers citing "Top-N: Equivariant set and graph generation without exchangeability"

28 / 28 papers shown
Title
Improving Equivariant Networks with Probabilistic Symmetry Breaking
Improving Equivariant Networks with Probabilistic Symmetry Breaking
Hannah Lawrence
Vasco Portilheiro
Yan Zhang
Sékou-Oumar Kaba
32
3
0
27 Mar 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
92
2
0
21 Feb 2025
Score-based 3D molecule generation with neural fields
Score-based 3D molecule generation with neural fields
Matthieu Kirchmeyer
Pedro H. O. Pinheiro
Saeed Saremi
DiffM
35
0
0
15 Jan 2025
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
27
1
0
04 Oct 2024
Generative Modelling of Structurally Constrained Graphs
Generative Modelling of Structurally Constrained Graphs
Manuel Madeira
Clément Vignac
D. Thanou
Pascal Frossard
DiffM
29
0
0
25 Jun 2024
Discrete-state Continuous-time Diffusion for Graph Generation
Discrete-state Continuous-time Diffusion for Graph Generation
Zhe Xu
Ruizhong Qiu
Yuzhong Chen
Huiyuan Chen
Xiran Fan
Menghai Pan
Zhichen Zeng
Mahashweta Das
Hanghang Tong
14
0
0
19 May 2024
A Review on Fragment-based De Novo 2D Molecule Generation
A Review on Fragment-based De Novo 2D Molecule Generation
Sergei Voloboev
VLM
19
0
0
08 May 2024
A Survey of Generative AI for de novo Drug Design: New Frontiers in
  Molecule and Protein Generation
A Survey of Generative AI for de novo Drug Design: New Frontiers in Molecule and Protein Generation
Xiangru Tang
Howard Dai
Elizabeth Knight
Fang Wu
Yunyang Li
Tianxiao Li
Mark B. Gerstein
12
24
0
13 Feb 2024
Interpreting Equivariant Representations
Interpreting Equivariant Representations
Andreas Abildtrup Hansen
Anna Calissano
Aasa Feragen
27
1
0
23 Jan 2024
Symmetry Breaking and Equivariant Neural Networks
Symmetry Breaking and Equivariant Neural Networks
Sekouba Kaba
Siamak Ravanbakhsh
19
11
0
14 Dec 2023
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph
  Generation
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation
Qi Yan
Zhen-Long Liang
Yang Song
Renjie Liao
Lele Wang
DiffM
33
18
0
04 Jul 2023
Hyperbolic Graph Diffusion Model
Hyperbolic Graph Diffusion Model
Lingfeng Wen
Xuan Tang
Mingjie Ouyang
Xiangxiang Shen
Jian Yang
Daxin Zhu
Mingsong Chen
Xian Wei
21
1
0
13 Jun 2023
Trans-Dimensional Generative Modeling via Jump Diffusion Models
Trans-Dimensional Generative Modeling via Jump Diffusion Models
Andrew Campbell
William Harvey
Christian Weilbach
Valentin De Bortoli
Tom Rainforth
Arnaud Doucet
DiffM
21
2
0
25 May 2023
Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation
  in 3D
Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D
Bo Qiang
Yuxuan Song
Minkai Xu
Jingjing Gong
B. Gao
Hao Zhou
Weiying Ma
Yanyan Lan
DiffM
30
5
0
05 May 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
25
34
0
28 Apr 2023
Bridging the Gap between Chemical Reaction Pretraining and Conditional
  Molecule Generation with a Unified Model
Bridging the Gap between Chemical Reaction Pretraining and Conditional Molecule Generation with a Unified Model
Bo Qiang
Yiran Zhou
Yuheng Ding
Ningfeng Liu
Song Song
L. Zhang
Bowei Huang
Zhenming Liu
AI4CE
10
4
0
13 Mar 2023
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
DiffM
22
33
0
17 Feb 2023
Conditional Diffusion Based on Discrete Graph Structures for Molecular
  Graph Generation
Conditional Diffusion Based on Discrete Graph Structures for Molecular Graph Generation
Han Huang
Leilei Sun
Bowen Du
Weifeng Lv
17
24
0
01 Jan 2023
Diffusion Models for Graphs Benefit From Discrete State Spaces
Diffusion Models for Graphs Benefit From Discrete State Spaces
K. Haefeli
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
DiffM
66
36
0
04 Oct 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
33
20
0
12 Sep 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
10
49
0
04 Apr 2022
Equivariant Diffusion for Molecule Generation in 3D
Equivariant Diffusion for Molecule Generation in 3D
Emiel Hoogeboom
Victor Garcia Satorras
Clément Vignac
Max Welling
DiffM
15
409
0
31 Mar 2022
A Survey on Deep Graph Generation: Methods and Applications
A Survey on Deep Graph Generation: Methods and Applications
Yanqiao Zhu
Yuanqi Du
Yinkai Wang
Yichen Xu
Jieyu Zhang
Qiang Liu
Shu Wu
3DV
GNN
16
40
0
13 Mar 2022
ReGAE: Graph autoencoder based on recursive neural networks
ReGAE: Graph autoencoder based on recursive neural networks
Adam Malkowski
Jakub Grzechociñski
Pawel Wawrzyñski
GNN
6
0
0
28 Jan 2022
Generating stable molecules using imitation and reinforcement learning
Generating stable molecules using imitation and reinforcement learning
S. A. Meldgaard
Jonas Köhler
H. L. Mortensen
Mads-Peter V. Christiansen
Frank Noé
B. Hammer
133
12
0
11 Jul 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
948
0
27 Apr 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
143
289
0
05 Nov 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
1