ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06122
  4. Cited By
Nonnegative spatial factorization

Nonnegative spatial factorization

12 October 2021
F. W. Townes
Barbara E. Engelhardt
ArXiv (abs)PDFHTMLGithub (58★)

Papers citing "Nonnegative spatial factorization"

18 / 18 papers shown
Title
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
127
51
0
27 Dec 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
51
82
0
29 Oct 2020
Latent variable modeling with random features
Latent variable modeling with random features
Gregory W. Gundersen
M. Zhang
Barbara E. Engelhardt
BDLDRL
38
11
0
19 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
126
123
0
17 Jun 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
100
95
0
02 Mar 2020
Efficient non-conjugate Gaussian process factor models for spike count
  data using polynomial approximations
Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations
Stephen L. Keeley
D. Zoltowski
Yiyi Yu
Jacob L. Yates
S. L. Smith
Jonathan W. Pillow
40
20
0
07 Jun 2019
A joint model of unpaired data from scRNA-seq and spatial
  transcriptomics for imputing missing gene expression measurements
A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements
Romain Lopez
Achille Nazaret
Maxime Langevin
Jules Samaran
Jeffrey Regier
Michael I. Jordan
N. Yosef
36
100
0
06 May 2019
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
93
33
0
26 Sep 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDLGP
100
423
0
24 May 2017
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes
Andrew O. Finley
A. Datta
B. Cook
Douglas C. Morton
Hans-Erik Andersen
Sudipto Banerjee
147
156
0
01 Feb 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
75
202
0
21 Nov 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
89
665
0
27 Oct 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
435
18,361
0
27 May 2016
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics
  from Population Spike Trains
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
Yuan Zhao
Il-Su Park
89
117
0
11 Apr 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
349
4,821
0
04 Jan 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,501
0
22 Dec 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
115
1,237
0
26 Sep 2013
1