ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08105
  4. Cited By
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps
  and Relevance Orderings

Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings

15 October 2021
Jan Macdonald
Mathieu Besançon
S. Pokutta
ArXivPDFHTML

Papers citing "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings"

8 / 8 papers shown
Title
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
29
0
0
28 Jan 2025
SAIF: Sparse Adversarial and Imperceptible Attack Framework
SAIF: Sparse Adversarial and Imperceptible Attack Framework
Tooba Imtiaz
Morgan Kohler
Jared Miller
Zifeng Wang
M. Sznaier
Octavia Camps
Octavia Camps
Jennifer Dy
AAML
18
0
0
14 Dec 2022
Spatial-temporal Concept based Explanation of 3D ConvNets
Spatial-temporal Concept based Explanation of 3D ConvNets
Yi Ji
Yu Wang
K. Mori
Jien Kato
3DPC
FAtt
11
7
0
09 Jun 2022
Interpretability Guarantees with Merlin-Arthur Classifiers
Interpretability Guarantees with Merlin-Arthur Classifiers
S. Wäldchen
Kartikey Sharma
Berkant Turan
Max Zimmer
S. Pokutta
FAtt
10
4
0
01 Jun 2022
Training Characteristic Functions with Reinforcement Learning:
  XAI-methods play Connect Four
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four
S. Wäldchen
Felix Huber
S. Pokutta
FAtt
23
8
0
23 Feb 2022
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
134
656
0
28 Dec 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,233
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1