ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09443
  4. Cited By
Beltrami Flow and Neural Diffusion on Graphs

Beltrami Flow and Neural Diffusion on Graphs

18 October 2021
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
    AI4CE
ArXivPDFHTML

Papers citing "Beltrami Flow and Neural Diffusion on Graphs"

27 / 27 papers shown
Title
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Z. Liu
Xiaoda Wang
Bohan Wang
Zijie Huang
Carl Yang
Wei-dong Jin
AI4TS
AI4CE
81
0
0
29 Mar 2025
Learning to Decouple Complex Systems
Learning to Decouple Complex Systems
Zihan Zhou
Tianshu Yu
BDL
64
4
0
17 Feb 2025
Understanding Oversmoothing in GNNs as Consensus in Opinion Dynamics
Understanding Oversmoothing in GNNs as Consensus in Opinion Dynamics
Keqin Wang
Yulong Yang
Ishan Saha
Christine Allen-Blanchette
51
1
0
31 Jan 2025
When Graph Neural Networks Meet Dynamic Mode Decomposition
When Graph Neural Networks Meet Dynamic Mode Decomposition
Dai Shi
Lequan Lin
Andi Han
Zhiyong Wang
Yi Guo
Junbin Gao
AI4CE
23
0
0
08 Oct 2024
A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs
A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs
Amitoz Azad
Yuan Fang
32
1
0
01 Jul 2024
Bundle Neural Networks for message diffusion on graphs
Bundle Neural Networks for message diffusion on graphs
Jacob Bamberger
Federico Barbero
Xiaowen Dong
Michael M. Bronstein
37
1
0
24 May 2024
Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory
Understanding Oversmoothing in Diffusion-Based GNNs From the Perspective of Operator Semigroup Theory
Weichen Zhao
Chenguang Wang
Xinyan Wang
Congying Han
Tiande Guo
Tianshu Yu
38
0
0
23 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
19
3
0
25 Jan 2024
PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
  a Large Field of View with Perturbations
PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in a Large Field of View with Perturbations
Rui She
Sijie Wang
Qiyu Kang
Kai Zhao
Yang Song
Wee Peng Tay
Tianyu Geng
Xingchao Jian
DiffM
3DPC
32
2
0
06 Jan 2024
A Geometric Insight into Equivariant Message Passing Neural Networks on
  Riemannian Manifolds
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
13
0
0
16 Oct 2023
Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach
Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach
Kai Zhao
Qiyu Kang
Yang Song
Rui She
Sijie Wang
Wee Peng Tay
AAML
25
21
0
10 Oct 2023
Supercharging Graph Transformers with Advective Diffusion
Supercharging Graph Transformers with Advective Diffusion
Qitian Wu
Chenxiao Yang
Kaipeng Zeng
Fan Nie
AI4CE
45
6
0
10 Oct 2023
Unifying over-smoothing and over-squashing in graph neural networks: A
  physics informed approach and beyond
Unifying over-smoothing and over-squashing in graph neural networks: A physics informed approach and beyond
Zhiqi Shao
Dai Shi
Andi Han
Yi Guo
Qianchuan Zhao
Junbin Gao
24
11
0
06 Sep 2023
QDC: Quantum Diffusion Convolution Kernels on Graphs
QDC: Quantum Diffusion Convolution Kernels on Graphs
Thomas Markovich
GNN
10
3
0
20 Jul 2023
Revisiting Generalized p-Laplacian Regularized Framelet GCNs:
  Convergence, Energy Dynamic and Training with Non-Linear Diffusion
Revisiting Generalized p-Laplacian Regularized Framelet GCNs: Convergence, Energy Dynamic and Training with Non-Linear Diffusion
Dai Shi
Zhiqi Shao
Yi Guo
Qianchuan Zhao
Junbin Gao
30
1
0
25 May 2023
Node Embedding from Hamiltonian Information Propagation in Graph Neural
  Networks
Node Embedding from Hamiltonian Information Propagation in Graph Neural Networks
Qiyu Kang
Kai Zhao
Yang Song
Sijie Wang
Rui She
Wee Peng Tay
28
0
0
02 Mar 2023
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
TIDE: Time Derivative Diffusion for Deep Learning on Graphs
M. Behmanesh
Maximilian Krahn
M. Ovsjanikov
DiffM
GNN
19
9
0
05 Dec 2022
Capturing Graphs with Hypo-Elliptic Diffusions
Capturing Graphs with Hypo-Elliptic Diffusions
Csaba Tóth
Darrick Lee
Celia Hacker
Harald Oberhauser
16
12
0
27 May 2022
Graph-Coupled Oscillator Networks
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
31
101
0
04 Feb 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
49
23
0
02 Feb 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
88
224
0
24 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
180
83
0
12 Sep 2019
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
14,047
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,809
0
25 Nov 2016
1