ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10486
  4. Cited By
A TinyML Platform for On-Device Continual Learning with Quantized Latent
  Replays

A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays

20 October 2021
Leonardo Ravaglia
Manuele Rusci
D. Nadalini
Alessandro Capotondi
Francesco Conti
Luca Benini
    BDL
ArXivPDFHTML

Papers citing "A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays"

30 / 30 papers shown
Title
TActiLE: Tiny Active LEarning for wearable devices
TActiLE: Tiny Active LEarning for wearable devices
Massimo Pavan
Claudio Galimberti
Manuel Roveri
12
0
0
02 May 2025
Generative Binary Memory: Pseudo-Replay Class-Incremental Learning on Binarized Embeddings
Yanis Basso-Bert
Anca Molnos
Romain Lemaire
William Guicquero
Antoine Dupret
BDL
51
0
0
13 Mar 2025
Towards Experience Replay for Class-Incremental Learning in Fully-Binary Networks
Yanis Basso-Bert
Anca Molnos
Romain Lemaire
William Guicquero
Antoine Dupret
CLL
34
0
0
10 Mar 2025
Delta: A Cloud-assisted Data Enrichment Framework for On-Device
  Continual Learning
Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning
Chen Gong
Zhenzhe Zheng
Fan Wu
Xiaofeng Jia
Guihai Chen
LMTD
FedML
18
0
0
24 Oct 2024
MicroFlow: An Efficient Rust-Based Inference Engine for TinyML
MicroFlow: An Efficient Rust-Based Inference Engine for TinyML
Matteo Carnelos
Francesco Pasti
Nicola Bellotto
13
1
0
28 Sep 2024
Latent Distillation for Continual Object Detection at the Edge
Latent Distillation for Continual Object Detection at the Edge
Francesco Pasti
Marina Ceccon
Davide Dalle Pezze
Francesco Paissan
Elisabetta Farella
Gian Antonio Susto
Nicola Bellotto
22
4
0
03 Sep 2024
On-device Learning of EEGNet-based Network For Wearable Motor Imagery
  Brain-Computer Interface
On-device Learning of EEGNet-based Network For Wearable Motor Imagery Brain-Computer Interface
Sizhen Bian
Pixi Kang
Julian Moosmann
Mengxi Liu
Pietro Bonazzi
Roman Rosipal
Michele Magno
33
0
0
25 Aug 2024
Diffusion Model Meets Non-Exemplar Class-Incremental Learning and Beyond
Diffusion Model Meets Non-Exemplar Class-Incremental Learning and Beyond
Jichuan Zhang
Yali Li
Xin Liu
Shengjin Wang
DiffM
23
0
0
06 Aug 2024
On-Device Training Empowered Transfer Learning For Human Activity
  Recognition
On-Device Training Empowered Transfer Learning For Human Activity Recognition
Pixi Kang
Julian Moosmann
Sizhen Bian
Michele Magno
28
0
0
04 Jul 2024
TinySV: Speaker Verification in TinyML with On-device Learning
TinySV: Speaker Verification in TinyML with On-device Learning
Massimo Pavan
Gioele Mombelli
Francesco Sinacori
Manuel Roveri
27
0
0
03 Jun 2024
On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure
  Use Case
On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case
Fatemeh Dehrouyeh
Li Yang
F. Badrkhani Ajaei
Abdallah Shami
25
6
0
25 Apr 2024
QCore: Data-Efficient, On-Device Continual Calibration for Quantized
  Models -- Extended Version
QCore: Data-Efficient, On-Device Continual Calibration for Quantized Models -- Extended Version
David Campos
Bin Yang
Tung Kieu
Miao Zhang
Chenjuan Guo
Christian S. Jensen
27
7
0
22 Apr 2024
12 mJ per Class On-Device Online Few-Shot Class-Incremental Learning
12 mJ per Class On-Device Online Few-Shot Class-Incremental Learning
Yoga Esa Wibowo
Cristian Cioflan
T. Ingolfsson
Michael Hersche
Leo Zhao
Abbas Rahimi
Luca Benini
CLL
24
0
0
12 Mar 2024
FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
  Learning with Hill-Climbing
FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental Learning with Hill-Climbing
Eduard Hogea
Adrian Daniel Popescu
Darian M. Onchis
Grégoire Petit
CLL
22
4
0
12 Mar 2024
Divide and not forget: Ensemble of selectively trained experts in
  Continual Learning
Divide and not forget: Ensemble of selectively trained experts in Continual Learning
Grzegorz Rype'sć
Sebastian Cygert
Valeriya Khan
Tomasz Trzciñski
Bartosz Zieliñski
Bartlomiej Twardowski
CLL
14
11
0
18 Jan 2024
Enabling On-device Continual Learning with Binary Neural Networks
Enabling On-device Continual Learning with Binary Neural Networks
Lorenzo Vorabbi
Davide Maltoni
Guido Borghi
Stefano Santi
MQ
20
0
0
18 Jan 2024
A Conditioned Unsupervised Regression Framework Attuned to the Dynamic
  Nature of Data Streams
A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams
René Richard
Nabil Belacel
10
0
0
12 Dec 2023
Hadamard Domain Training with Integers for Class Incremental Quantized
  Learning
Hadamard Domain Training with Integers for Class Incremental Quantized Learning
Martin Schiemer
Clemens J. S. Schaefer
Jayden Parker Vap
Mark Horeni
Yu Emma Wang
Juan Ye
Siddharth Joshi
23
0
0
05 Oct 2023
A Machine Learning-oriented Survey on Tiny Machine Learning
A Machine Learning-oriented Survey on Tiny Machine Learning
Luigi Capogrosso
Federico Cunico
D. Cheng
Franco Fummi
Marco Cristani
SyDa
MU
8
11
0
21 Sep 2023
Online Continual Learning for Robust Indoor Object Recognition
Online Continual Learning for Robust Indoor Object Recognition
Umberto Michieli
Mete Ozay
19
7
0
19 Jul 2023
Reduced Precision Floating-Point Optimization for Deep Neural Network
  On-Device Learning on MicroControllers
Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers
D. Nadalini
Manuele Rusci
Luca Benini
Francesco Conti
15
13
0
30 May 2023
TinyReptile: TinyML with Federated Meta-Learning
TinyReptile: TinyML with Federated Meta-Learning
Haoyu Ren
Darko Anicic
Thomas Runkler
14
15
0
11 Apr 2023
RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible
  and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration
RedMule: A Mixed-Precision Matrix-Matrix Operation Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and TinyML Training Acceleration
Yvan Tortorella
L. Bertaccini
Luca Benini
D. Rossi
Francesco Conti
12
2
0
10 Jan 2023
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
Grégoire Petit
Adrian Daniel Popescu
Hugo Schindler
David Picard
Bertrand Delezoide
CLL
12
71
0
23 Nov 2022
Machine Learning for Microcontroller-Class Hardware: A Review
Machine Learning for Microcontroller-Class Hardware: A Review
Swapnil Sayan Saha
S. Sandha
Mani B. Srivastava
8
86
0
29 May 2022
Intelligence at the Extreme Edge: A Survey on Reformable TinyML
Intelligence at the Extreme Edge: A Survey on Reformable TinyML
Visal Rajapakse
Ishan Karunanayake
Nadeem Ahmed
SyDa
18
32
0
02 Apr 2022
Constrained Few-shot Class-incremental Learning
Constrained Few-shot Class-incremental Learning
Michael Hersche
G. Karunaratne
G. Cherubini
Luca Benini
A. Sebastian
Abbas Rahimi
CLL
11
113
0
30 Mar 2022
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
R. David
Jared Duke
Advait Jain
Vijay Janapa Reddi
Nat Jeffries
...
Meghna Natraj
Shlomi Regev
Rocky Rhodes
Tiezhen Wang
Pete Warden
86
461
0
17 Oct 2020
Benchmarking TinyML Systems: Challenges and Direction
Benchmarking TinyML Systems: Challenges and Direction
Colby R. Banbury
Vijay Janapa Reddi
Max Lam
William Fu
A. Fazel
...
Jae-sun Seo
Jeff Sieracki
Urmish Thakker
Marian Verhelst
Poonam Yadav
93
226
0
10 Mar 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
170
1,018
0
06 Mar 2020
1