ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11875
  4. Cited By
GeneDisco: A Benchmark for Experimental Design in Drug Discovery

GeneDisco: A Benchmark for Experimental Design in Drug Discovery

22 October 2021
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
ArXivPDFHTML

Papers citing "GeneDisco: A Benchmark for Experimental Design in Drug Discovery"

17 / 17 papers shown
Title
In-silico biological discovery with large perturbation models
In-silico biological discovery with large perturbation models
Djordje Miladinovic
Tobias Hoppe
Mathieu Chevalley
Andreas Georgiou
Lachlan Stuart
Arash Mehrjou
M. Bantscheff
Bernhard Schölkopf
Patrick Schwab
36
0
0
30 Mar 2025
Efficient Data Selection for Training Genomic Perturbation Models
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
150
0
0
18 Mar 2025
Automated Discovery of Pairwise Interactions from Unstructured Data
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton A. Earnshaw
Jason S. Hartford
23
2
0
11 Sep 2024
Active Learning for Neural PDE Solvers
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
45
4
0
02 Aug 2024
BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments
BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments
Yusuf Roohani
Jian Vora
Qian Huang
Zach Steinhart
Alex Marson
Percy Liang
J. Leskovec
Percy Liang
Jure Leskovec
LLMAG
LM&Ro
46
13
0
27 May 2024
DiscoBAX: Discovery of Optimal Intervention Sets in Genomic Experiment
  Design
DiscoBAX: Discovery of Optimal Intervention Sets in Genomic Experiment Design
Clare Lyle
Arash Mehrjou
Pascal Notin
Andrew Jesson
Stefan Bauer
Y. Gal
Patrick Schwab
49
10
0
07 Dec 2023
Multi-omics Prediction from High-content Cellular Imaging with Deep
  Learning
Multi-omics Prediction from High-content Cellular Imaging with Deep Learning
Rahil Mehrizi
Arash Mehrjou
M. Alegro
Yi Zhao
Benedetta Carbone
...
S. Sanford
Hakan Keles
M. Bantscheff
Cuong Nguyen
Patrick Schwab
28
4
0
15 Jun 2023
DRCFS: Doubly Robust Causal Feature Selection
DRCFS: Doubly Robust Causal Feature Selection
Francesco Quinzan
Ashkan Soleymani
Patrik Jaillet
C. Rojas
Stefan Bauer
27
11
0
12 Jun 2023
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
35
2
0
24 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from
  Single-cell Perturbation Data
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
26
36
0
31 Oct 2022
Experimental Design for Multi-Channel Imaging via Task-Driven Feature
  Selection
Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
Stefano B. Blumberg
Paddy J. Slator
Daniel C. Alexander
37
1
0
13 Oct 2022
Combinatorial and algebraic perspectives on the marginal independence
  structure of Bayesian networks
Combinatorial and algebraic perspectives on the marginal independence structure of Bayesian networks
Danai Deligeorgaki
Alex Markham
Pratik Misra
Liam Solus
27
4
0
03 Oct 2022
Neural Design for Genetic Perturbation Experiments
Neural Design for Genetic Perturbation Experiments
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
32
4
0
26 Jul 2022
PyRelationAL: a python library for active learning research and
  development
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
19
0
0
23 May 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
23
34
0
17 Mar 2022
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1