ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12884
  4. Cited By
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
  Networks

DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

25 October 2021
A. Saha
Trent Kyono
J. Linmans
M. Schaar
    CML
ArXivPDFHTML

Papers citing "DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks"

28 / 28 papers shown
Title
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Yihan Lin
Zhirong Bella Yu
Simon Lee
SyDa
46
0
0
20 Apr 2025
Diffusion Transformers for Tabular Data Time Series Generation
Diffusion Transformers for Tabular Data Time Series Generation
Fabrizio Garuti
E. Sangineto
Simone Luetto
L. Forni
Rita Cucchiara
57
0
0
10 Apr 2025
Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Nazia Nafis
Inaki Esnaola
Alvaro Martinez-Perez
Maria-Cruz Villa-Uriol
Venet Osmani
LMTD
47
0
0
10 Apr 2025
Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering
Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering
Yuan Sui
Yufei He
Zifeng Ding
Bryan Hooi
HILM
ELM
RALM
64
7
0
20 Feb 2025
Metrics for Inter-Dataset Similarity with Example Applications in Synthetic Data and Feature Selection Evaluation - Extended Version
Metrics for Inter-Dataset Similarity with Example Applications in Synthetic Data and Feature Selection Evaluation - Extended Version
Muhammad Rajabinasab
A. Lautrup
Arthur Zimek
55
0
0
17 Jan 2025
Deep generative models as an adversarial attack strategy for tabular
  machine learning
Deep generative models as an adversarial attack strategy for tabular machine learning
Salijona Dyrmishi
Mihaela C. Stoian
Eleonora Giunchiglia
Maxime Cordy
AAML
LMTD
21
0
0
19 Sep 2024
Fairness-Aware Meta-Learning via Nash Bargaining
Fairness-Aware Meta-Learning via Nash Bargaining
Yi Zeng
Xuelin Yang
Li Chen
Cristian Canton Ferrer
Ming Jin
Michael I. Jordan
Ruoxi Jia
37
2
0
11 Jun 2024
Permissioned Blockchain-based Framework for Ranking Synthetic Data
  Generators
Permissioned Blockchain-based Framework for Ranking Synthetic Data Generators
Narasimha Raghavan
Mohammad Hossein Tabatabaei
Severin Elvatun
V. Vallevik
S. Larønningen
J. F. Nygård
40
2
0
12 May 2024
Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming
  Generative Adversarial Networks
Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks
R. Ramachandranpillai
Md Fahim Sikder
David Bergstrom
Fredrik Heintz
SyDa
22
6
0
21 Apr 2024
Balanced Mixed-Type Tabular Data Synthesis with Diffusion Models
Balanced Mixed-Type Tabular Data Synthesis with Diffusion Models
Zeyu Yang
Peikun Guo
Khadija Zanna
Akane Sano
Xiaoxue Yang
Akane Sano
DiffM
34
8
0
12 Apr 2024
Balancing Act: Distribution-Guided Debiasing in Diffusion Models
Balancing Act: Distribution-Guided Debiasing in Diffusion Models
Rishubh Parihar
Abhijnya Bhat
Abhipsa Basu
Saswat Mallick
Jogendra Nath Kundu
R. V. Babu
43
18
0
28 Feb 2024
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ossi Raisa
Antti Honkela
67
0
0
06 Feb 2024
Fair Supervised Learning with A Simple Random Sampler of Sensitive
  Attributes
Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes
Jinwon Sohn
Qifan Song
Guang Lin
FaML
32
1
0
10 Nov 2023
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning
  for Medical Imaging
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging
Charles Jones
Daniel Coelho De Castro
Fabio De Sousa Ribeiro
Ozan Oktay
Melissa McCradden
Ben Glocker
FaML
CML
30
9
0
31 Jul 2023
Membership Inference Attacks against Synthetic Data through Overfitting
  Detection
Membership Inference Attacks against Synthetic Data through Overfitting Detection
B. V. Breugel
Hao Sun
Zhaozhi Qian
M. Schaar
19
45
0
24 Feb 2023
CHeart: A Conditional Spatio-Temporal Generative Model for Cardiac
  Anatomy
CHeart: A Conditional Spatio-Temporal Generative Model for Cardiac Anatomy
Mengyun Qiao
Shuo Wang
Huaqi Qiu
A. de Marvao
D. O’Regan
Daniel Rueckert
Wenjia Bai
MedIm
21
14
0
30 Jan 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
45
11
0
29 Jan 2023
Synthcity: facilitating innovative use cases of synthetic data in
  different data modalities
Synthcity: facilitating innovative use cases of synthetic data in different data modalities
Zhaozhi Qian
B. Cebere
M. Schaar
SyDa
28
57
0
18 Jan 2023
On the causality-preservation capabilities of generative modelling
On the causality-preservation capabilities of generative modelling
Yves-Cédric Bauwelinckx
Jan Dhaene
Tim Verdonck
Milan van den Heuvel
CML
AI4CE
30
0
0
03 Jan 2023
Navigating causal deep learning
Navigating causal deep learning
Jeroen Berrevoets
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
CML
31
2
0
01 Dec 2022
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
Causal Structural Hypothesis Testing and Data Generation Models
Causal Structural Hypothesis Testing and Data Generation Models
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Sunay Bhat
Gregory Pottie
CML
27
1
0
20 Oct 2022
A Differentiable Distance Approximation for Fairer Image Classification
A Differentiable Distance Approximation for Fairer Image Classification
Nicholas Rosa
Tom Drummond
Mehrtash Harandi
13
0
0
09 Oct 2022
CAT: Controllable Attribute Translation for Fair Facial Attribute
  Classification
CAT: Controllable Attribute Translation for Fair Facial Attribute Classification
Jiazhi Li
Wael AbdAlmageed
CVBM
22
8
0
14 Sep 2022
De-Biasing Generative Models using Counterfactual Methods
De-Biasing Generative Models using Counterfactual Methods
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Gregory Pottie
CML
21
7
0
04 Jul 2022
Synthetic Data -- what, why and how?
Synthetic Data -- what, why and how?
James Jordon
Lukasz Szpruch
F. Houssiau
M. Bottarelli
Giovanni Cherubin
Carsten Maple
Samuel N. Cohen
Adrian Weller
35
109
0
06 May 2022
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
  and Auditing Generative Models
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
45
186
0
17 Feb 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
233
488
0
31 Dec 2020
1