ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14811
  4. Cited By
SE(3) Equivariant Graph Neural Networks with Complete Local Frames

SE(3) Equivariant Graph Neural Networks with Complete Local Frames

26 October 2021
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei-Neng Chen
Bin Shao
Tie-Yan Liu
ArXivPDFHTML

Papers citing "SE(3) Equivariant Graph Neural Networks with Complete Local Frames"

16 / 16 papers shown
Title
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
68
0
0
26 Feb 2025
On the Expressive Power of Sparse Geometric MPNNs
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
40
1
0
02 Jul 2024
A Survey on Vision-Language-Action Models for Embodied AI
A Survey on Vision-Language-Action Models for Embodied AI
Yueen Ma
Zixing Song
Yuzheng Zhuang
Jianye Hao
Irwin King
LM&Ro
67
41
0
23 May 2024
Accelerating Material Property Prediction using Generically Complete
  Isometry Invariants
Accelerating Material Property Prediction using Generically Complete Isometry Invariants
Jonathan Balasingham
Viktor Zamaraev
V. Kurlin
14
5
0
22 Jan 2024
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Equivariant Graph Neural Operator for Modeling 3D Dynamics
Minkai Xu
Jiaqi Han
Aaron Lou
Jean Kossaifi
Arvind Ramanathan
Kamyar Azizzadenesheli
J. Leskovec
Stefano Ermon
A. Anandkumar
AI4CE
24
16
0
19 Jan 2024
Uncovering Neural Scaling Laws in Molecular Representation Learning
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
21
15
0
15 Sep 2023
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
22
29
0
28 May 2023
Accurate transition state generation with an object-aware equivariant
  elementary reaction diffusion model
Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model
Chenru Duan
Yuanqi Du
Haojun Jia
Heather J. Kulik
DiffM
19
46
0
12 Apr 2023
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
8
2
0
14 Nov 2022
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
23
61
0
11 Nov 2022
Structure-based Drug Design with Equivariant Diffusion Models
Structure-based Drug Design with Equivariant Diffusion Models
Arne Schneuing
Yuanqi Du
Charles Harris
Arian R. Jamasb
Ilia Igashov
...
Pietro Lió
Carla P. Gomes
Max Welling
Michael M. Bronstein
B. Correia
DiffM
24
193
0
24 Oct 2022
A Flexible Diffusion Model
A Flexible Diffusion Model
Weitao Du
Tao Yang
Heidi Zhang
Yuanqi Du
DiffM
25
11
0
17 Jun 2022
Direct Molecular Conformation Generation
Direct Molecular Conformation Generation
Jinhua Zhu
Yingce Xia
Chang-Shu Liu
Lijun Wu
Shufang Xie
...
Tao Qin
Wen-gang Zhou
Houqiang Li
Haiguang Liu
Tie-Yan Liu
17
41
0
03 Feb 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng
Or Litany
Yueqi Duan
A. Poulenard
Andrea Tagliasacchi
Leonidas J. Guibas
3DPC
102
314
0
25 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
149
308
0
05 Nov 2018
1