Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.00034
Cited By
Neural Networks as Kernel Learners: The Silent Alignment Effect
29 October 2021
Alexander B. Atanasov
Blake Bordelon
C. Pehlevan
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Networks as Kernel Learners: The Silent Alignment Effect"
50 / 57 papers shown
Title
Corner Gradient Descent
Dmitry Yarotsky
36
0
0
16 Apr 2025
Dynamically Learning to Integrate in Recurrent Neural Networks
Blake Bordelon
Jordan Cotler
C. Pehlevan
Jacob A. Zavatone-Veth
53
2
0
24 Mar 2025
The Spectral Bias of Shallow Neural Network Learning is Shaped by the Choice of Non-linearity
Justin Sahs
Ryan Pyle
Fabio Anselmi
Ankit B. Patel
52
0
0
13 Mar 2025
Make Haste Slowly: A Theory of Emergent Structured Mixed Selectivity in Feature Learning ReLU Networks
Devon Jarvis
Richard Klein
Benjamin Rosman
Andrew M. Saxe
MLT
64
1
0
08 Mar 2025
A Theory of Initialisation's Impact on Specialisation
Devon Jarvis
Sebastian Lee
Clémentine Dominé
Andrew M. Saxe
Stefano Sarao Mannelli
CLL
67
2
0
04 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
61
1
0
04 Feb 2025
Training Dynamics of In-Context Learning in Linear Attention
Yedi Zhang
Aaditya K. Singh
Peter E. Latham
Andrew Saxe
MLT
64
1
0
28 Jan 2025
Flexible task abstractions emerge in linear networks with fast and bounded units
Kai Sandbrink
Jan P. Bauer
A. Proca
Andrew M. Saxe
Christopher Summerfield
Ali Hummos
63
2
0
17 Jan 2025
Geometric Inductive Biases of Deep Networks: The Role of Data and Architecture
Sajad Movahedi
Antonio Orvieto
Seyed-Mohsen Moosavi-Dezfooli
AAML
AI4CE
133
0
0
15 Oct 2024
Features are fate: a theory of transfer learning in high-dimensional regression
Javan Tahir
Surya Ganguli
Grant M. Rotskoff
32
1
0
10 Oct 2024
Collective variables of neural networks: empirical time evolution and scaling laws
S. Tovey
Sven Krippendorf
M. Spannowsky
Konstantin Nikolaou
Christian Holm
17
0
0
09 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
SGD with memory: fundamental properties and stochastic acceleration
Dmitry Yarotsky
Maksim Velikanov
33
1
0
05 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
54
12
0
26 Sep 2024
Towards understanding epoch-wise double descent in two-layer linear neural networks
Amanda Olmin
Fredrik Lindsten
MLT
27
3
0
13 Jul 2024
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
45
15
0
10 Jun 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
61
12
0
24 May 2024
Half-Space Feature Learning in Neural Networks
Mahesh Lorik Yadav
H. G. Ramaswamy
Chandrashekar Lakshminarayanan
MLT
27
0
0
05 Apr 2024
Mean-field Analysis on Two-layer Neural Networks from a Kernel Perspective
Shokichi Takakura
Taiji Suzuki
MLT
22
5
0
22 Mar 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
44
3
0
12 Mar 2024
Directional Convergence Near Small Initializations and Saddles in Two-Homogeneous Neural Networks
Akshay Kumar
Jarvis D. Haupt
ODL
30
7
0
14 Feb 2024
A Dynamical Model of Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
46
36
0
02 Feb 2024
Task structure and nonlinearity jointly determine learned representational geometry
Matteo Alleman
Jack W. Lindsey
Stefano Fusi
38
8
0
24 Jan 2024
Manipulating Sparse Double Descent
Ya Shi Zhang
19
0
0
19 Jan 2024
Rethinking Adversarial Training with Neural Tangent Kernel
Guanlin Li
Han Qiu
Shangwei Guo
Jiwei Li
Tianwei Zhang
AAML
22
0
0
04 Dec 2023
Understanding Unimodal Bias in Multimodal Deep Linear Networks
Yedi Zhang
Peter E. Latham
Andrew Saxe
26
5
0
01 Dec 2023
The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks
Lénaic Chizat
Praneeth Netrapalli
18
4
0
30 Nov 2023
A Spectral Condition for Feature Learning
Greg Yang
James B. Simon
Jeremy Bernstein
22
25
0
26 Oct 2023
How connectivity structure shapes rich and lazy learning in neural circuits
Yuhan Helena Liu
A. Baratin
Jonathan H. Cornford
Stefan Mihalas
E. Shea-Brown
Guillaume Lajoie
38
14
0
12 Oct 2023
An Adaptive Tangent Feature Perspective of Neural Networks
Daniel LeJeune
Sina Alemohammad
11
1
0
29 Aug 2023
Catapults in SGD: spikes in the training loss and their impact on generalization through feature learning
Libin Zhu
Chaoyue Liu
Adityanarayanan Radhakrishnan
M. Belkin
30
13
0
07 Jun 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
34
25
0
29 May 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
17
10
0
29 May 2023
Feature-Learning Networks Are Consistent Across Widths At Realistic Scales
Nikhil Vyas
Alexander B. Atanasov
Blake Bordelon
Depen Morwani
Sabarish Sainathan
C. Pehlevan
24
22
0
28 May 2023
Neural (Tangent Kernel) Collapse
Mariia Seleznova
Dana Weitzner
Raja Giryes
Gitta Kutyniok
H. Chou
21
6
0
25 May 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
32
29
0
27 Mar 2023
TRAK: Attributing Model Behavior at Scale
Sung Min Park
Kristian Georgiev
Andrew Ilyas
Guillaume Leclerc
A. Madry
TDI
30
127
0
24 Mar 2023
Linear CNNs Discover the Statistical Structure of the Dataset Using Only the Most Dominant Frequencies
Hannah Pinson
Joeri Lenaerts
V. Ginis
13
3
0
03 Mar 2023
Mechanism of feature learning in deep fully connected networks and kernel machines that recursively learn features
Adityanarayanan Radhakrishnan
Daniel Beaglehole
Parthe Pandit
M. Belkin
FAtt
MLT
23
11
0
28 Dec 2022
The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich Regimes
Alexander B. Atanasov
Blake Bordelon
Sabarish Sainathan
C. Pehlevan
22
26
0
23 Dec 2022
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
40
14
0
11 Nov 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
28
13
0
21 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
39
16
0
11 Oct 2022
The Influence of Learning Rule on Representation Dynamics in Wide Neural Networks
Blake Bordelon
C. Pehlevan
41
22
0
05 Oct 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
13
3
0
04 Sep 2022
A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta
Maksim Velikanov
Denis Kuznedelev
Dmitry Yarotsky
9
8
0
22 Jun 2022
Limitations of the NTK for Understanding Generalization in Deep Learning
Nikhil Vyas
Yamini Bansal
Preetum Nakkiran
22
31
0
20 Jun 2022
Spectral Bias Outside the Training Set for Deep Networks in the Kernel Regime
Benjamin Bowman
Guido Montúfar
14
14
0
06 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
1
2
Next