ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.02398
  4. Cited By
Transparency of Deep Neural Networks for Medical Image Analysis: A
  Review of Interpretability Methods

Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods

1 November 2021
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
ArXiv (abs)PDFHTML

Papers citing "Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods"

23 / 73 papers shown
Corrupting Neuron Explanations of Deep Visual Features
Corrupting Neuron Explanations of Deep Visual FeaturesIEEE International Conference on Computer Vision (ICCV), 2023
Divyansh Srivastava
Tuomas P. Oikarinen
Tsui-Wei Weng
FAttAAML
128
3
0
25 Oct 2023
A Framework for Interpretability in Machine Learning for Medical Imaging
A Framework for Interpretability in Machine Learning for Medical ImagingIEEE Access (IEEE Access), 2023
Alan Q. Wang
Batuhan K. Karaman
Heejong Kim
Jacob Rosenthal
Rachit Saluja
Sean I. Young
M. Sabuncu
AI4CE
442
24
0
02 Oct 2023
A Survey on Image-text Multimodal Models
A Survey on Image-text Multimodal Models
Ruifeng Guo
Jingxuan Wei
Linzhuang Sun
Khai-Nguyen Nguyen
Guiyong Chang
Dawei Liu
Sibo Zhang
Zhengbing Yao
Mingjun Xu
Liping Bu
VLM
328
22
0
23 Sep 2023
Rethinking Data Distillation: Do Not Overlook Calibration
Rethinking Data Distillation: Do Not Overlook CalibrationIEEE International Conference on Computer Vision (ICCV), 2023
Dongyao Zhu
Bowen Lei
Jie M. Zhang
Yanbo Fang
Ruqi Zhang
Yiqun Xie
Dongkuan Xu
DDFedML
353
18
0
24 Jul 2023
Identifying Interpretable Subspaces in Image Representations
Identifying Interpretable Subspaces in Image RepresentationsInternational Conference on Machine Learning (ICML), 2023
Neha Kalibhat
S. Bhardwaj
Bayan Bruss
Hamed Firooz
Maziar Sanjabi
Soheil Feizi
FAtt
303
34
0
20 Jul 2023
Interpreting and Correcting Medical Image Classification with PIP-Net
Interpreting and Correcting Medical Image Classification with PIP-Net
Meike Nauta
J. H. Hegeman
J. Geerdink
Jorg Schlotterer
M. V. Keulen
Christin Seifert
MedIm
163
15
0
19 Jul 2023
SHAMSUL: Systematic Holistic Analysis to investigate Medical
  Significance Utilizing Local interpretability methods in deep learning for
  chest radiography pathology prediction
SHAMSUL: Systematic Holistic Analysis to investigate Medical Significance Utilizing Local interpretability methods in deep learning for chest radiography pathology predictionNordic Machine Intelligence (NMI), 2023
Mahbub Ul Alam
Jaakko Hollmén
Jón R. Baldvinsson
R. Rahmani
FAtt
477
3
0
16 Jul 2023
Interpreting and generalizing deep learning in physics-based problems
  with functional linear models
Interpreting and generalizing deep learning in physics-based problems with functional linear modelsEngineering computations (Eng. Comput.), 2023
Amirhossein Arzani
Lingxiao Yuan
P. Newell
Bei Wang
AI4CE
279
11
0
10 Jul 2023
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control
  Method For Robust Cardiac Image Segmentation
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation
F. Uslu
Anil A. Bharath
160
15
0
21 Dec 2022
Interpretable Diabetic Retinopathy Diagnosis based on Biomarker
  Activation Map
Interpretable Diabetic Retinopathy Diagnosis based on Biomarker Activation MapIEEE Transactions on Biomedical Engineering (IEEE TBME), 2022
P. Zang
T. Hormel
Jie Wang
Yukun Guo
Steven T. Bailey
C. Flaxel
David Huang
T. Hwang
Yali Jia
MedIm
258
11
0
13 Dec 2022
Evaluation and Improvement of Interpretability for Self-Explainable
  Part-Prototype Networks
Evaluation and Improvement of Interpretability for Self-Explainable Part-Prototype NetworksIEEE International Conference on Computer Vision (ICCV), 2022
Qihan Huang
Mengqi Xue
Wenqi Huang
Haofei Zhang
Mingli Song
Yongcheng Jing
Weilong Dai
AAML
359
41
0
12 Dec 2022
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAIFAtt
406
24
0
10 Nov 2022
cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule
  Diagnosis
cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule DiagnosisIEEE International Symposium on Biomedical Imaging (ISBI), 2022
Jiahao Lu
Chong Yin
S. Darkner
M. B. Nielsen
Kenny Erleben
211
1
0
28 Oct 2022
Tiny-HR: Towards an interpretable machine learning pipeline for heart
  rate estimation on edge devices
Tiny-HR: Towards an interpretable machine learning pipeline for heart rate estimation on edge devices
Preetam Anbukarasu
Shailesh Nanisetty
Ganesh Tata
Nilanjan Ray
239
7
0
16 Aug 2022
Visual Interpretable and Explainable Deep Learning Models for Brain
  Tumor MRI and COVID-19 Chest X-ray Images
Visual Interpretable and Explainable Deep Learning Models for Brain Tumor MRI and COVID-19 Chest X-ray Images
Yusuf Brima
M. Atemkeng
FAttMedIm
200
2
0
01 Aug 2022
Improving Disease Classification Performance and Explainability of Deep
  Learning Models in Radiology with Heatmap Generators
Improving Disease Classification Performance and Explainability of Deep Learning Models in Radiology with Heatmap GeneratorsFrontiers in Radiology (Front. Radiol.), 2022
A. Watanabe
Sara Ketabi
Khashayar Namdar
Namdar
Farzad Khalvati
158
14
0
28 Jun 2022
Reducing Annotation Need in Self-Explanatory Models for Lung Nodule
  Diagnosis
Reducing Annotation Need in Self-Explanatory Models for Lung Nodule Diagnosis
Jiahao Lu
Chong Yin
Oswin Krause
S. Darkner
M. B. Nielsen
Kenny Erleben
MedIm
198
3
0
27 Jun 2022
Explainable Deep Learning Methods in Medical Image Classification: A
  Survey
Explainable Deep Learning Methods in Medical Image Classification: A SurveyACM Computing Surveys (ACM CSUR), 2022
Cristiano Patrício
João C. Neves
Luís F. Teixeira
XAI
279
105
0
10 May 2022
Attri-VAE: attribute-based interpretable representations of medical
  images with variational autoencoders
Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders
Irem Cetin
Maialen Stephens
Oscar Camara
M. A. G. Ballester
DRL
336
46
0
20 Mar 2022
Explainable Medical Imaging AI Needs Human-Centered Design: Guidelines
  and Evidence from a Systematic Review
Explainable Medical Imaging AI Needs Human-Centered Design: Guidelines and Evidence from a Systematic Reviewnpj Digital Medicine (npj Digit Med), 2021
Haomin Chen
Catalina Gomez
Chien-Ming Huang
Mathias Unberath
424
188
0
21 Dec 2021
A Survey on Neural-symbolic Learning Systems
A Survey on Neural-symbolic Learning SystemsNeural Networks (NN), 2021
Dongran Yu
Bo Yang
Da Liu
Hui Wang
Shirui Pan
367
94
0
10 Nov 2021
An Explainable-AI approach for Diagnosis of COVID-19 using MALDI-ToF
  Mass Spectrometry
An Explainable-AI approach for Diagnosis of COVID-19 using MALDI-ToF Mass Spectrometry
V. Seethi
Z. LaCasse
P. Chivte
Joshua Bland
Shrihari S. Kadkol
E. Gaillard
Pratool Bharti
Hamed Alhoori
231
18
0
28 Sep 2021
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
2.5K
19,924
0
16 Feb 2016
Previous
12
Page 2 of 2