Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2111.02398
Cited By
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
1 November 2021
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods"
23 / 73 papers shown
Corrupting Neuron Explanations of Deep Visual Features
IEEE International Conference on Computer Vision (ICCV), 2023
Divyansh Srivastava
Tuomas P. Oikarinen
Tsui-Wei Weng
FAtt
AAML
128
3
0
25 Oct 2023
A Framework for Interpretability in Machine Learning for Medical Imaging
IEEE Access (IEEE Access), 2023
Alan Q. Wang
Batuhan K. Karaman
Heejong Kim
Jacob Rosenthal
Rachit Saluja
Sean I. Young
M. Sabuncu
AI4CE
442
24
0
02 Oct 2023
A Survey on Image-text Multimodal Models
Ruifeng Guo
Jingxuan Wei
Linzhuang Sun
Khai-Nguyen Nguyen
Guiyong Chang
Dawei Liu
Sibo Zhang
Zhengbing Yao
Mingjun Xu
Liping Bu
VLM
328
22
0
23 Sep 2023
Rethinking Data Distillation: Do Not Overlook Calibration
IEEE International Conference on Computer Vision (ICCV), 2023
Dongyao Zhu
Bowen Lei
Jie M. Zhang
Yanbo Fang
Ruqi Zhang
Yiqun Xie
Dongkuan Xu
DD
FedML
353
18
0
24 Jul 2023
Identifying Interpretable Subspaces in Image Representations
International Conference on Machine Learning (ICML), 2023
Neha Kalibhat
S. Bhardwaj
Bayan Bruss
Hamed Firooz
Maziar Sanjabi
Soheil Feizi
FAtt
303
34
0
20 Jul 2023
Interpreting and Correcting Medical Image Classification with PIP-Net
Meike Nauta
J. H. Hegeman
J. Geerdink
Jorg Schlotterer
M. V. Keulen
Christin Seifert
MedIm
163
15
0
19 Jul 2023
SHAMSUL: Systematic Holistic Analysis to investigate Medical Significance Utilizing Local interpretability methods in deep learning for chest radiography pathology prediction
Nordic Machine Intelligence (NMI), 2023
Mahbub Ul Alam
Jaakko Hollmén
Jón R. Baldvinsson
R. Rahmani
FAtt
477
3
0
16 Jul 2023
Interpreting and generalizing deep learning in physics-based problems with functional linear models
Engineering computations (Eng. Comput.), 2023
Amirhossein Arzani
Lingxiao Yuan
P. Newell
Bei Wang
AI4CE
279
11
0
10 Jul 2023
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation
F. Uslu
Anil A. Bharath
160
15
0
21 Dec 2022
Interpretable Diabetic Retinopathy Diagnosis based on Biomarker Activation Map
IEEE Transactions on Biomedical Engineering (IEEE TBME), 2022
P. Zang
T. Hormel
Jie Wang
Yukun Guo
Steven T. Bailey
C. Flaxel
David Huang
T. Hwang
Yali Jia
MedIm
258
11
0
13 Dec 2022
Evaluation and Improvement of Interpretability for Self-Explainable Part-Prototype Networks
IEEE International Conference on Computer Vision (ICCV), 2022
Qihan Huang
Mengqi Xue
Wenqi Huang
Haofei Zhang
Mingli Song
Yongcheng Jing
Weilong Dai
AAML
359
41
0
12 Dec 2022
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
406
24
0
10 Nov 2022
cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule Diagnosis
IEEE International Symposium on Biomedical Imaging (ISBI), 2022
Jiahao Lu
Chong Yin
S. Darkner
M. B. Nielsen
Kenny Erleben
211
1
0
28 Oct 2022
Tiny-HR: Towards an interpretable machine learning pipeline for heart rate estimation on edge devices
Preetam Anbukarasu
Shailesh Nanisetty
Ganesh Tata
Nilanjan Ray
239
7
0
16 Aug 2022
Visual Interpretable and Explainable Deep Learning Models for Brain Tumor MRI and COVID-19 Chest X-ray Images
Yusuf Brima
M. Atemkeng
FAtt
MedIm
200
2
0
01 Aug 2022
Improving Disease Classification Performance and Explainability of Deep Learning Models in Radiology with Heatmap Generators
Frontiers in Radiology (Front. Radiol.), 2022
A. Watanabe
Sara Ketabi
Khashayar Namdar
Namdar
Farzad Khalvati
158
14
0
28 Jun 2022
Reducing Annotation Need in Self-Explanatory Models for Lung Nodule Diagnosis
Jiahao Lu
Chong Yin
Oswin Krause
S. Darkner
M. B. Nielsen
Kenny Erleben
MedIm
198
3
0
27 Jun 2022
Explainable Deep Learning Methods in Medical Image Classification: A Survey
ACM Computing Surveys (ACM CSUR), 2022
Cristiano Patrício
João C. Neves
Luís F. Teixeira
XAI
279
105
0
10 May 2022
Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders
Irem Cetin
Maialen Stephens
Oscar Camara
M. A. G. Ballester
DRL
336
46
0
20 Mar 2022
Explainable Medical Imaging AI Needs Human-Centered Design: Guidelines and Evidence from a Systematic Review
npj Digital Medicine (npj Digit Med), 2021
Haomin Chen
Catalina Gomez
Chien-Ming Huang
Mathias Unberath
424
188
0
21 Dec 2021
A Survey on Neural-symbolic Learning Systems
Neural Networks (NN), 2021
Dongran Yu
Bo Yang
Da Liu
Hui Wang
Shirui Pan
367
94
0
10 Nov 2021
An Explainable-AI approach for Diagnosis of COVID-19 using MALDI-ToF Mass Spectrometry
V. Seethi
Z. LaCasse
P. Chivte
Joshua Bland
Shrihari S. Kadkol
E. Gaillard
Pratool Bharti
Hamed Alhoori
231
18
0
28 Sep 2021
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
2.5K
19,924
0
16 Feb 2016
Previous
1
2
Page 2 of 2