Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.03412
Cited By
Dual Parameterization of Sparse Variational Gaussian Processes
5 November 2021
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dual Parameterization of Sparse Variational Gaussian Processes"
14 / 14 papers shown
Title
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
36
3
0
19 Jul 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
37
0
0
04 Jun 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Sparse Function-space Representation of Neural Networks
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
35
1
0
05 Sep 2023
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
20
3
0
07 Jun 2023
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
25
4
0
06 Jun 2023
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
22
5
0
03 Jun 2023
Towards Improved Learning in Gaussian Processes: The Best of Two Worlds
Rui Li
S. T. John
Arno Solin
BDL
GP
22
0
0
11 Nov 2022
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Paul E. Chang
Prakhar Verma
S. T. John
Victor Picheny
Henry B. Moss
Arno Solin
GP
33
6
0
02 Nov 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Sampling-based inference for large linear models, with application to linearised Laplace
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric T. Nalisnick
David Janz
José Miguel Hernández-Lobato
BDL
27
17
0
10 Oct 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
1