ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12823
  4. Cited By
Fairness for AUC via Feature Augmentation

Fairness for AUC via Feature Augmentation

24 November 2021
H. Fong
Vineet Kumar
Anay Mehrotra
Nisheeth K. Vishnoi
ArXivPDFHTML

Papers citing "Fairness for AUC via Feature Augmentation"

9 / 9 papers shown
Title
Fair Classification with Partial Feedback: An Exploration-Based Data
  Collection Approach
Fair Classification with Partial Feedback: An Exploration-Based Data Collection Approach
Vijay Keswani
Anay Mehrotra
L. E. Celis
FaML
33
0
0
17 Feb 2024
Reranking individuals: The effect of fair classification within-groups
Reranking individuals: The effect of fair classification within-groups
S. Goethals
T. Calders
FaML
24
1
0
24 Jan 2024
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
  for Developing Practical Guidelines and Tools
Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda for Developing Practical Guidelines and Tools
Maximilian Schambach
Rakshit Naidu
Rayid Ghani
Kit T. Rodolfa
Daniel E. Ho
Hoda Heidari
FaML
35
14
0
29 Sep 2023
Data Bias Management
Data Bias Management
Gianluca Demartini
Kevin Roitero
Stefano Mizzaro
24
5
0
15 May 2023
MEDFAIR: Benchmarking Fairness for Medical Imaging
MEDFAIR: Benchmarking Fairness for Medical Imaging
Yongshuo Zong
Yongxin Yang
Timothy M. Hospedales
OOD
71
58
0
04 Oct 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
31
159
0
14 Jul 2022
Adaptive Sampling Strategies to Construct Equitable Training Datasets
Adaptive Sampling Strategies to Construct Equitable Training Datasets
William Cai
R. Encarnación
Bobbie Chern
S. Corbett-Davies
Miranda Bogen
Stevie Bergman
Sharad Goel
77
30
0
31 Jan 2022
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
198
2,082
0
24 Oct 2016
1