Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.01698
Cited By
Learning to Detect Every Thing in an Open World
3 December 2021
Kuniaki Saito
Ping Hu
Trevor Darrell
Kate Saenko
ObjD
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Detect Every Thing in an Open World"
7 / 7 papers shown
Title
Generalized Class Discovery in Instance Segmentation
Cuong Manh Hoang
Yeejin Lee
Byeongkeun Kang
ISeg
87
0
0
12 Feb 2025
Impact of Pseudo Depth on Open World Object Segmentation with Minimal User Guidance
Robin Schon
K. Ludwig
Rainer Lienhart
VLM
MDE
22
2
0
12 Apr 2023
OpenInst: A Simple Query-Based Method for Open-World Instance Segmentation
Cheng Wang
Guoli Wang
Qian Zhang
Pengning Guo
Wenyu Liu
Xinggang Wang
ISeg
VLM
19
7
0
28 Mar 2023
Towards Generalized Few-Shot Open-Set Object Detection
Binyi Su
Hua Zhang
Jingzhi Li
Zhongjun Zhou
43
9
0
28 Oct 2022
Tunable Hybrid Proposal Networks for the Open World
Matthew J. Inkawhich
Nathan Inkawhich
H. Li
Yiran Chen
19
2
0
23 Aug 2022
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
168
686
0
22 Apr 2021
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Yin Cui
A. Srinivas
Rui Qian
Tsung-Yi Lin
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
226
966
0
13 Dec 2020
1