Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03749
Cited By
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
7 December 2021
Nikolas Nusken
Lorenz Richter
PINN
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems"
17 / 17 papers shown
Title
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
40
0
0
02 May 2025
Estimating Committor Functions via Deep Adaptive Sampling on Rare Transition Paths
Yueyang Wang
Kejun Tang
Xili Wang
Xiaoliang Wan
Weiqing Ren
Chao Yang
32
0
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
44
3
0
10 Jan 2025
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
21
8
0
10 Jul 2024
Solving Poisson Equations using Neural Walk-on-Spheres
Hong Chul Nam
Julius Berner
Anima Anandkumar
17
3
0
05 Jun 2024
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
22
0
0
22 May 2024
From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs
Lorenz Richter
Leon Sallandt
Nikolas Nusken
9
4
0
28 Jul 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
21
3
0
03 Jul 2023
Deep Stochastic Mechanics
Elena Orlova
Aleksei Ustimenko
Ruoxi Jiang
Peter Y. Lu
Rebecca Willett
DiffM
20
0
0
31 May 2023
Score Operator Newton transport
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
OT
12
1
0
16 May 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
40
4
0
10 Feb 2023
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
15
78
0
02 Nov 2022
Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning
Lorenz Richter
Julius Berner
14
15
0
21 Jun 2022
A Priori Generalization Error Analysis of Two-Layer Neural Networks for Solving High Dimensional Schrödinger Eigenvalue Problems
Jianfeng Lu
Yulong Lu
21
27
0
04 May 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
126
435
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
133
444
0
16 Sep 2019
1