ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08796
  4. Cited By
Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
  Label Mixing

Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated Label Mixing

16 December 2021
Joonhyung Park
J. Yang
Jinwoo Shin
S. Hwang
Eunho Yang
ArXivPDFHTML

Papers citing "Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated Label Mixing"

7 / 7 papers shown
Title
SUMix: Mixup with Semantic and Uncertain Information
SUMix: Mixup with Semantic and Uncertain Information
Huafeng Qin
Xin Jin
Hongyu Zhu
Hongchao Liao
M. El-Yacoubi
Xinbo Gao
UQCV
26
5
0
10 Jul 2024
Expeditious Saliency-guided Mix-up through Random Gradient Thresholding
Expeditious Saliency-guided Mix-up through Random Gradient Thresholding
Minh-Long Luu
Zeyi Huang
Eric P. Xing
Yong Jae Lee
Haohan Wang
AAML
21
1
0
09 Dec 2022
ConfMix: Unsupervised Domain Adaptation for Object Detection via
  Confidence-based Mixing
ConfMix: Unsupervised Domain Adaptation for Object Detection via Confidence-based Mixing
Giulio Mattolin
Luca Zanella
Elisa Ricci
Yiming Wang
ObjD
27
40
0
20 Oct 2022
Harnessing Hard Mixed Samples with Decoupled Regularizer
Harnessing Hard Mixed Samples with Decoupled Regularizer
Zicheng Liu
Siyuan Li
Ge Wang
Cheng Tan
Lirong Wu
Stan Z. Li
51
18
0
21 Mar 2022
Boosting Discriminative Visual Representation Learning with
  Scenario-Agnostic Mixup
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Siyuan Li
Zicheng Liu
Zedong Wang
Di Wu
Zihan Liu
Stan Z. Li
20
26
0
30 Nov 2021
Survey: Image Mixing and Deleting for Data Augmentation
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
26
78
0
13 Jun 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,235
0
24 Jun 2017
1