ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09196
  4. Cited By
Benchmarking Uncertainty Quantification on Biosignal Classification
  Tasks under Dataset Shift

Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift

16 December 2021
Tong Xia
Jing Han
Cecilia Mascolo
    OOD
ArXivPDFHTML

Papers citing "Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift"

7 / 7 papers shown
Title
Prediction Accuracy & Reliability: Classification and Object
  Localization under Distribution Shift
Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift
Fabian Diet
Moussa Kassem Sbeyti
Michelle Karg
41
0
0
05 Sep 2024
Informative Priors Improve the Reliability of Multimodal Clinical Data
  Classification
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
37
3
0
17 Nov 2023
Uncertainty Quantification in Machine Learning for Biosignal
  Applications -- A Review
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
24
1
0
15 Nov 2023
ECG-Based Electrolyte Prediction: Evaluating Regression and
  Probabilistic Methods
ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods
Philipp Bachmann
Daniel Gedon
Fredrik K. Gustafsson
Antônio H. Ribeiro
E. Lampa
S. Gustafsson
Johan Sundström
Thomas B. Schon
23
1
0
21 Dec 2022
Uncertainty aware and explainable diagnosis of retinal disease
Uncertainty aware and explainable diagnosis of retinal disease
Amitojdeep Singh
S. Sengupta
M. Rasheed
Varadharajan Jayakumar
Vasudevan Lakshminarayanan
BDL
27
21
0
26 Jan 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1